Posyandu Application for Monitoring Children Under-Five: A 3-Year Data Quality Map in Indonesia
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Data Completeness
3.2. Data Accuracy and Consistency
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Neil, I. Digital Health Promotion: A Critical Introduction; Polity Press: Cambridge, UK; Medford, MA, USA, 2019. [Google Scholar]
- Sujarwoto, S.; Augia, T.; Dahlan, H.; Sahputri, R.A.M.; Holipah, H.; Maharani, A. COVID-19 Mobile Health Apps: An Overview of Mobile Applications in Indonesia. Front. Public Health 2022, 10, 879695. [Google Scholar] [CrossRef] [PubMed]
- Rinawan, F.R.; Susanti, A.I.; Amelia, I.; Ardisasmita, M.N.; Dewi, R.K.; Ferdian, D.; Purnama, W.G.; Purbasari, A. Understanding mobile application development and implementation for monitoring Posyandu data in Indonesia: A 3-year hybrid action study to build “a bridge” from the community to the national scale. BMC Public Health 2021, 21, 1024. [Google Scholar] [CrossRef] [PubMed]
- Costa-Santos, C.; Neves, A.L.; Correia, R.; Santos, P.; Monteiro-Soares, M.; Freitas, A.; Ribeiro-Vaz, I.; Henriques, T.S.; Pereira Rodrigues, P.; Costa-Pereira, A.; et al. COVID-19 surveillance data quality issues: A national consecutive case series. BMJ Open 2021, 11, e047623. [Google Scholar] [CrossRef] [PubMed]
- Glèlè Ahanhanzo, Y.; Ouedraogo, L.T.; Kpozèhouen, A.; Coppieters, Y.; Makoutodé, M.; Wilmet-Dramaix, M. Factors associated with data quality in the routine health information system of Benin. Arch. Public Health Arch. Belg. Sante Publique 2014, 72, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Hailey, D.; Wang, N.; Yu, P. A review of data quality assessment methods for public health information systems. Int. J. Environ. Res. Public Health 2014, 11, 5170–5207. [Google Scholar] [CrossRef]
- Cook, L.A.; Sachs, J.; Weiskopf, N.G. The quality of social determinants data in the electronic health record: A systematic review. J. Am. Med. Inform. Assoc. 2021, 29, 187–196. [Google Scholar] [CrossRef]
- Daneshkohan, A.; Alimoradi, M.; Ahmadi, M.; Alipour, J. Data quality and data use in primary health care: A case study from Iran. Inform. Med. Unlocked 2022, 28, 100855. [Google Scholar] [CrossRef]
- World Health Organization. Data Quality Review: Module 1: Framework and Metrics. 2017. Available online: http://apps.who.int/iris/bitstream/10665/259224/1/9789241512725-eng.pdf (accessed on 20 April 2022).
- World Health Organization. Recommendations for Data Collection, Analysis and Reporting on Anthropometric Indicators in Children under 5 Years Old. 2019. Available online: https://apps.who.int/iris/bitstream/handle/10665/324791/9789241515559-eng.pdf (accessed on 28 April 2022).
- Nazri, C.; Yamazaki, C.; Kameo, S.; Herawati, D.M.D.; Sekarwana, N.; Raksanagara, A.; Koyama, H. Factors influencing mother’s participation in Posyandu for improving nutritional status of children under-five in Aceh Utara district, Aceh province, Indonesia. BMC Public Health 2016, 16, 69. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health. Pedoman Umum Pengelolaan Posyandu (General guideline of Posyandu Management), General Secretary Indonesia Ministry of Health, Jakarta, Indonesia. 2011. Available online: https://promkes.kemkes.go.id/pedoman-umum-pengelolaan-posyandu (accessed on 28 April 2022).
- Suryanto; Plummer, V.; Boyle, M. Healthcare System in Indonesia. Hosp. Top. 2017, 95, 82–89. [Google Scholar] [CrossRef]
- Eze, E.; Gleasure, R.; Heavin, C. Mobile health solutions in developing countries: A stakeholder perspective. Health Syst. 2020, 9, 179–201. [Google Scholar] [CrossRef]
- Duarte, L.; Teodoro, A.C.; Lobo, M.; Viana, J.; Pinheiro, V.; Freitas, A. An Open Source GIS Application for Spatial Assessment of Health Care Quality Indicators. ISPRS Int. J. Geo-Inf. 2021, 10, 264. [Google Scholar] [CrossRef]
- Murad, A.; Khashoggi, B.F. Using GIS for Disease Mapping and Clustering in Jeddah, Saudi Arabia. ISPRS Int. J. Geo-Inf. 2020, 9, 328. [Google Scholar] [CrossRef]
- Rinawan, F.R.; Tateishi, R.; Raksanagara, A.S.; Agustian, D.; Alsaaideh, B.; Natalia, Y.A.; Raksanagara, A. Pitch and Flat Roof Factors’ Association with Spatiotemporal Patterns of Dengue Disease Analysed Using Pan-Sharpened Worldview 2 Imagery. ISPRS Int. J. Geo-Inf. 2015, 4, 2586–2603. [Google Scholar] [CrossRef] [Green Version]
- Tariq, H.; Tahir, A.; Touati, F.; Al-Hitmi, M.A.E.; Crescini, D.; Ben Manouer, A. Geographical Area Network—Structural Health Monitoring Utility Computing Model. ISPRS Int. J. Geo-Inf. 2019, 8, 154. [Google Scholar] [CrossRef] [Green Version]
- Yeboah, G.; Porto de Albuquerque, J.; Troilo, R.; Tregonning, G.; Perera, S.; Ahmed, S.A.K.S.; Ajisola, M.; Alam, O.; Aujla, N.; Azam, S.I.; et al. Analysis of OpenStreetMap Data Quality at Different Stages of a Participatory Mapping Process: Evidence from Slums in Africa and Asia. ISPRS Int. J. Geo-Inf. 2021, 10, 265. [Google Scholar] [CrossRef]
- Khashoggi, B.F.; Murad, A. Issues of healthcare planning and GIS: A review. ISPRS Int. J. Geo-Inf. 2020, 9, 352. [Google Scholar] [CrossRef]
- Senaratne, H.; Mobasheri, A.; Ali, A.L.; Capineri, C.; Haklay, M. A review of volunteered geographic information quality assessment methods. Int. J. Geogr. Inf. Sci. 2017, 31, 139–167. [Google Scholar] [CrossRef]
- Alwan, A.A.; Ciupala, M.A.; Brimicombe, A.J.; Ghorashi, S.A.; Baravalle, A.; Falcarin, P. Data quality challenges in large-scale cyber-physical systems: A systematic review. Inf. Syst. 2022, 105, 101951. [Google Scholar] [CrossRef]
- Marx, S.; Phalkey, R.; Aranda-Jan, C.B.; Profe, J.; Sauerborn, R.; Höfle, B. Geographic information analysis and web-based geoportals to explore malnutrition in Sub-Saharan Africa: A systematic review of approaches. BMC Public Health 2014, 14, 1189. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.S.; Mohamed Yusoff, H.; Abu Bakar, Y.I.; Thwe Aung, M.M.; Abas, M.I.; Ramli, R.A. Digital health for quality healthcare: A systematic mapping of review studies. Digital Health 2022, 8, 1–20. [Google Scholar] [CrossRef]
- Chen, Y.; Sanesi, G.; Li, X.; Chen, W.Y.; Lafortezza, R. Remote Sensing and Urban Green Infrastructure. In Urban Remote Sensing; John Wiley & Sons Ltd.: Oxford, UK, 2021; pp. 447–468. [Google Scholar]
- Källander, K.; Tibenderana, K.J.; Akpogheneta, J.O.; Strachan, L.D.; Hill, Z.; ten Asbroek, A.A.H.; Conteh, L.; Kirkwood, R.B.; Meek, R.S. Mobile Health (mHealth) Approaches and lessons for increased performance and retention of community health workers in low- and middle-income countries: A review. J. Med. Internet Res. 2013, 15, e17. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health. Indikator Program Kesehatan Masyarakat dalam RPJMN dan Renstra Kementerian Kesehatan 2020–2024 (Public Health Program Indicator in National Midterm Development Plan (NMDP) and Ministry of Health Strategic Plan 2020–2024). 2020. Available online: https://kesmas.kemkes.go.id/assets/uploads/contents/attachments/ef5bb48f4aaae60ebb724caf1c534a24.pdf (accessed on 28 April 2022).
- Freedman, D.S.; Lawman, H.G.; Pan, L.; Skinner, A.C.; Allison, D.B.; McGuire, L.C.; Blanck, H.M. The prevalence and validity of high, biologically implausible values of weight, height, and BMI among 8.8 million children. Obesity 2016, 24, 1132–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vreese, R.; Leys, M.; Fontaine, C.M.; Dendoncker, N. Social mapping of perceived ecosystem services supply–The role of social landscape metrics and social hotspots for integrated ecosystem services assessment, landscape planning and management. Ecol. Indic. 2016, 66, 517–533. [Google Scholar] [CrossRef]
- Vaughan, L. Mapping Society: The Spatial Dimensions of Social Cartography; UCL Press: London, UK, 2018. [Google Scholar]
- Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Pallant, J. SPSS Survival Guide Manual, 6th ed.; Open University Press, McGraw-Hill Education: Berkshire, UK, 2016. [Google Scholar]
- Weatherburn, C.J. Data quality in primary care, Scotland. Scott. Med. J. 2021, 66, 66–72. [Google Scholar] [CrossRef]
- Malmqvist, J.; Hellberg, K.; Möllås, G.; Rose, R.; Shevlin, M. Conducting the Pilot Study: A Neglected Part of the Research Process? Methodological Findings Supporting the Importance of Piloting in Qualitative Research Studies. Int. J. Qual. Methods 2019, 18, 1609406919878341. [Google Scholar] [CrossRef] [Green Version]
- Nicol, E.; Bradshaw, D.; Phillips, T.; Dudley, L. Human factors affecting the quality of routinely collected data in South Africa. Stud. Health Technol. Inform. 2013, 192, 788–792. [Google Scholar]
- Mondal, S.; Samaddar, K. Reinforcing the significance of human factor in achieving quality performance in data-driven supply chain management. TQM J. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- WHO. World Health Organization Guideline in Policy and System Support to Optimize Community Health Worker Programmes. 2018. Available online: http://apps.who.int/iris/bitstream/handle/10665/275474/9789241550369-eng.pdf (accessed on 28 April 2022).
- Stara, V.; Santini, S.; Kropf, J.; D’Amen, B. Digital Health Coaching Programs Among Older Employees in Transition to Retirement: Systematic Literature Review. J. Med. Internet Res. 2020, 22, e17809. [Google Scholar] [CrossRef]
- Rialike, B.; Reka Lagora, M.; Suryanti. Factors Related to the Performance of Cadre in the Implementation of Toddler Posyandu at the Working Area of Puskesmas Sulau in South Bengkulu Regency. In Proceedings of the 1st International Conference on Inter-professional Health Collaboration (ICIHC 2018), Bengkulu, Indonesia, 30 October–1 November 2018; 2019; pp. 256–259. [Google Scholar]
- Rinawan, F.R.; Kusumastuti, P.; Mandiri, A.; Dewi, R.K. Association of Cadre’s Knowledge with Age, Duration of Work, Education, and Employment on the Use of iPosyandu Application in Pasawahan, Purwakarta. J. Ilmu Kesehat. Masy. 2020, 11, 150–159. [Google Scholar] [CrossRef]
- Verbree, A.-R.; Toepoel, V.; Perada, D. The Effect of Seriousness and Device Use on Data Quality. Soc. Sci. Comput. Rev. 2020, 38, 720–738. [Google Scholar] [CrossRef]
- Abejirinde, I.-O.O.; Ilozumba, O.; Marchal, B.; Zweekhorst, M.; Dieleman, M. Mobile health and the performance of maternal health care workers in low-and middle-income countries: A realist review. Int. J. Care Coord. 2018, 21, 73–86. [Google Scholar] [CrossRef] [Green Version]
- Laar, A.; Bekyieriya, E.; Isang, S.; Baguune, B. Assessment of mobile health technology for maternal and child health services in rural Upper West Region of Ghana. Public Health 2019, 168, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Birkmeyer, S.; Wirtz, B.W.; Langer, P.F. Determinants of mHealth success: An empirical investigation of the user perspective. Int. J. Inf. Manag. 2021, 59, 102351. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kim, K.-J.; Lee, D.-H.; Kim, M.-G. Identification of critical quality dimensions for continuance intention in mHealth services: Case study of onecare service. Int. J. Inf. Manag. 2019, 46, 187–197. [Google Scholar] [CrossRef]
- Benski, A.C.; Stancanelli, G.; Scaringella, S.; Herinainasolo, J.L.; Jinoro, J.; Vassilakos, P.; Petignat, P.; Schmidt, N.C. Usability and feasibility of a mobile health system to provide comprehensive antenatal care in low-income countries: PANDA mHealth pilot study in Madagascar. J. Telemed. Telecare 2017, 23, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Sari, A.N.; Susanti, A.I.; Rinawan, F.R. Survei Kepuasan Kader dalam Penggunaan Aplikasi iPosyandu dalam Pelayanan Kesehatan Ibu dan Anak di Indonesia. J. Bidan Cerdas 2021, 3, 72–80. [Google Scholar] [CrossRef]
- Lazard, A.J.; Brennen, J.S.B.; Belina, S.P. App Designs and Interactive Features to Increase mHealth Adoption: User Expectation Survey and Experiment. JMIR Mhealth Uhealth 2021, 9, e29815. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Wang, P.; Liu, Q.; Deng, Z.; Wang, J. Research Trend of the Unified Theory of Acceptance and Use of Technology Theory: A Bibliometric Analysis. Sustainability 2021, 14, 10. [Google Scholar] [CrossRef]
- Fadahunsi, K.P.; O’Connor, S.; Akinlua, J.T.; Wark, P.A.; Gallagher, J.; Carroll, C.; Car, J.; Majeed, A.; O’Donoghue, J. Information quality frameworks for digital health technologies: Systematic review. J. Med. Internet Res. 2021, 23, e23479. [Google Scholar] [CrossRef]
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things is a revolutionary approach for future technology enhancement: A review. J. Big Data 2019, 6, 111. [Google Scholar] [CrossRef] [Green Version]
- Shoesmith, D.; Franklin, N.; Hidayat, R. Decentralised Governance in Indonesia’s Disadvantaged Regions: A Critique of the Underperforming Model of Local Governance in Eastern Indonesia. J. Curr. Southeast Asian Aff. 2020, 39, 359–380. [Google Scholar] [CrossRef]
- Ministry of Secretariat. Indonesian Ministry of Secretariat Pocket Book of Human Development Cadre (Buku Saku Kader Pembangunan Manusia). 2021. Available online: http://bppsdmk.kemkes.go.id/pusdiksdmk/wp-content/uploads/2018/09/Asuhan-Kebidanan-Komunitas_SC.pdf (accessed on 28 April 2022).
- Nurwarsito, H.; Savitri, N. Development of Mobile Applications for Posyandu Administration Services Using Google Maps API Geolocation Tagging. In Proceedings of the 2018 International Conference on Sustainable Information Engineering and Technology (SIET), Malang, Indonesia, 10–12 November 2018; pp. 168–173. [Google Scholar]
- Ministry of Health. Ministry of Health Guideline on Integrated Nutrition Information System. 2019. Available online: https://sigiziterpadu.kemkes.go.id/login_sisfo/assets/PANDUAN_SIGIZI_TERPADU.pdf (accessed on 3 May 2022).
- Purbasari, A.; Rinawan, F.R.; Zulianto, A.; Susanti, A.I.; Komara, H. CRISP-DM for Data Quality Improvement to Support Machine Learning of Stunting Prediction in Infants and Toddlers. In Proceedings of the 2021 8th International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA), Bandung, Indonesia, 29–30 September 2021; pp. 1–6. [Google Scholar]
- Bertossi, L.; Geerts, F. Data quality and explainable AI. J. Data Inf. Qual. 2020, 12, 1–9. [Google Scholar] [CrossRef]
- Ahmad, T.; Aziz, M.N. Data preprocessing and feature selection for machine learning intrusion detection systems. ICIC Express Lett. 2019, 13, 93–101. [Google Scholar]
Data Completeness * | 2019 | 2020 | 2021 | Total | p | ||||
---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | ||
1–4 | 5951 | 9.41 | 7430 | 11.74 | 15,740 | 24.88 | 29,121 | 46.03 | 0.000 ** |
5–8 | 5120 | 8.09 | 2124 | 3.36 | 11,192 | 17.69 | 18,436 | 29.14 | |
9–12 | 7106 | 11.23 | 2666 | 4.21 | 5943 | 9.39 | 15,715 | 24.84 | |
Total | 18,177 | 28.73 | 12,220 | 19.31 | 32,875 | 51.96 | 63,272 | 100.00 |
Data Accuracy | 2019 | 2020 | 2021 | Total | p | ||||
---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | ||
Outliers | 5168 | 7.73 | 4332 | 6.48 | 1988 | 2.97 | 11,488 | 17.18 | 0.000 * |
Accurate | 13,664 | 20.43 | 8797 | 13.15 | 32,936 | 49.24 | 55,397 | 82.82 | |
Total | 18,832 | 28.16 | 13,129 | 19.63 | 34,924 | 52.51 | 66,855 | 100.00 |
Province | Data Completeness 2019 | Data Completeness 2020 | Data Completeness 2021 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1–4 | 5–8 | 9–12 | Total | % | 1–4 | 5–8 | 9–12 | Total | % | 1–4 | 5–8 | 9–12 | Total | % | |
Aceh | 60 | 0 | 0 | 60 | 0.49 | 4 | 0 | 0 | 4 | 0.01 | |||||
Bali | 118 | 167 | 112 | 397 | 2.18 | 158 | 30 | 0 | 188 | 1.54 | 131 | 142 | 0 | 273 | 0.83 |
Banten | 5 | 0 | 0 | 5 | 0.03 | 77 | 0 | 0 | 77 | 0.63 | 477 | 652 | 66 | 1195 | 3.63 |
Bengkulu | 3 | 0 | 0 | 3 | 0.02 | 46 | 0 | 0 | 46 | 0.38 | |||||
DI Yogyakarta | 104 | 0 | 0 | 104 | 0.57 | 25 | 0 | 0 | 25 | 0.20 | 0 | 5 | 0 | 5 | 0.02 |
DKI Jakarta | 693 | 0 | 0 | 693 | 3.81 | 1044 | 174 | 1285 | 2503 | 20.48 | 3644 | 2739 | 442 | 6825 | 20.76 |
Gorontalo | 60 | 0 | 0 | 60 | 0.49 | ||||||||||
Jambi | 41 | 89 | 0 | 130 | 0.72 | 26 | 0 | 0 | 26 | 0.21 | |||||
Jawa Barat | 4617 | 4595 | 6721 | 15,933 | 87.65 | 3852 | 1112 | 965 | 5929 | 48.52 | 8961 | 5381 | 4803 | 19,145 | 58.24 |
Jawa Tengah | 7 | 5 | 0 | 12 | 0.07 | 334 | 0 | 0 | 334 | 2.73 | 1 | 0 | 0 | 1 | 0.00 |
Jawa Timur | 7 | 0 | 0 | 7 | 0.04 | 99 | 0 | 0 | 99 | 0.81 | 1344 | 824 | 0 | 2168 | 6.59 |
Kalimantan Barat | 34 | 0 | 0 | 34 | 0.28 | 50 | 33 | 0 | 83 | 0.25 | |||||
Kalimantan Selatan | 3 | 0 | 0 | 3 | 0.02 | 22 | 0 | 0 | 22 | 0.18 | 78 | 0 | 0 | 78 | 0.24 |
Kalimantan Tengah | 8 | 0 | 0 | 8 | 0.04 | 277 | 88 | 10 | 375 | 3.07 | 93 | 0 | 0 | 93 | 0.28 |
Kalimantan Timur | 21 | 16 | 57 | 94 | 0.52 | 55 | 43 | 0 | 98 | 0.80 | 72 | 0 | 0 | 72 | 0.22 |
Kalimantan Utara | 33 | 0 | 0 | 33 | 0.27 | 7 | 0 | 0 | 7 | 0.02 | |||||
Kepulauan Bangka Belitung | 18 | 0 | 0 | 18 | 0.10 | 4 | 0 | 0 | 4 | 0.03 | |||||
Kepulauan Riau | 3 | 0 | 0 | 3 | 0.02 | 47 | 186 | 9 | 242 | 0.74 | |||||
Lampung | 195 | 14 | 0 | 209 | 1.15 | 275 | 314 | 66 | 655 | 5.36 | 258 | 50 | 0 | 308 | 0.94 |
Maluku | 83 | 173 | 0 | 256 | 2.09 | ||||||||||
Maluku Utara | 44 | 0 | 0 | 44 | 0.13 | ||||||||||
Nusa Tenggara Barat | 28 | 0 | 0 | 28 | 0.15 | 233 | 80 | 318 | 631 | 5.16 | 135 | 440 | 0 | 575 | 1.75 |
Nusa Tenggara Timur | 7 | 0 | 0 | 7 | 0.06 | ||||||||||
Papua | 26 | 0 | 0 | 26 | 0.14 | ||||||||||
Papua Barat | 1 | 0 | 0 | 1 | 0.01 | ||||||||||
Riau | 1 | 0 | 0 | 1 | 0.01 | 66 | 0 | 0 | 66 | 0.54 | |||||
Sulawesi Barat | 1 | 0 | 0 | 1 | 0.01 | 18 | 128 | 0 | 146 | 0.44 | |||||
Sulawesi Selatan | 139 | 0 | 0 | 139 | 1.14 | ||||||||||
Sulawesi Tengah | 48 | 234 | 216 | 498 | 2.74 | 343 | 110 | 22 | 475 | 3.89 | 167 | 491 | 605 | 1263 | 3.84 |
Sulawesi Tenggara | 1 | 0 | 0 | 1 | 0.01 | 50 | 0 | 0 | 50 | 0.41 | 16 | 0 | 0 | 16 | 0.05 |
Sulawesi Utara | 3 | 0 | 0 | 3 | 0.02 | 2 | 0 | 0 | 2 | 0.01 | |||||
Sumatera Barat | 4 | 0 | 0 | 4 | 0.02 | ||||||||||
Sumatera Selatan | 1 | 0 | 0 | 1 | 0.01 | 20 | 0 | 0 | 20 | 0.16 | 191 | 121 | 18 | 330 | 1.00 |
Sumatera Utara | 2 | 0 | 0 | 2 | 0.02 | ||||||||||
Total | 5951 | 5120 | 7106 | 18,177 | 100.00 | 7430 | 2124 | 2666 | 12,220 | 100.00 | 15,740 | 11.92 | 5943 | 32,875 | 100.00 |
Province | Data Accuracy 2019 | c. alpha * | Data Accuracy 2020 | c. alpha * | Data Accuracy 2021 | c. alpha * | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
O ** | % | A ** | % | Total | % | O ** | % | A ** | % | Total | % | O ** | % | A ** | % | Total | % | ||||
Aceh | no obs | 3 | 0.02 | 57 | 0.43 | 60 | 0.46 | 0.5326 | 1 | 0.00 | 3 | 0.01 | 4 | 0.01 | 0.7273 | ||||||
Bali | 94 | 0.50 | 306 | 1.62 | 400 | 2.12 | 0.0598 | 18 | 0.14 | 174 | 1.33 | 192 | 1.46 | 0.205 | 29 | 0.08 | 250 | 0.72 | 279 | 0.80 | 0.503 |
Banten | 1 | 0.01 | 4 | 0.02 | 5 | 0.03 | 0.8824 | 32 | 0.24 | 51 | 0.39 | 83 | 0.63 | 0.4205 | 173 | 0.50 | 1217 | 3.48 | 1390 | 3.98 | 0.1952 |
Bengkulu | 3 | 0.02 | 0 | 0.00 | 3 | 0.02 | too few | 54 | 0.41 | 0 | 0.00 | 54 | 0.41 | too few | no obs | ||||||
DI Yogyakarta | 51 | 0.27 | 61 | 0.32 | 112 | 0.59 | 0.7353 | 3 | 0.02 | 23 | 0.18 | 26 | 0.20 | 0.8679 | 0 | 0.00 | 5 | 0.01 | 5 | 0.01 | too few |
DKI Jakarta | 199 | 1.06 | 558 | 2.96 | 757 | 4.02 | 0.7356 | 275 | 2.09 | 2416 | 18.40 | 2691 | 20.50 | 0.6014 | 299 | 0.86 | 7060 | 20.22 | 7359 | 21.07 | 0.6565 |
Gorontalo | no obs | 63 | 0.48 | 0 | 0.00 | 63 | 0.48 | 0.7441 | no obs | ||||||||||||
Jambi | 130 | 0.69 | 0 | 0.00 | 130 | 0.69 | 1 | 26 | 0.20 | 0 | 0.00 | 26 | 0.20 | too few | no obs | ||||||
Jawa Barat | 4306 | 22.87 | 12,155 | 64.54 | 16,461 | 87.41 | 0.5462 | 2615 | 19.92 | 3828 | 29.16 | 6443 | 49.07 | 0.5101 | 1044 | 2.99 | 19,222 | 55.04 | 20,266 | 58.03 | 0.4122 |
Jawa Tengah | 12 | 0.06 | 3 | 0.02 | 15 | 0.08 | 0.6074 | 18 | 0.14 | 334 | 2.54 | 352 | 2.68 | 0.7326 | 0 | 0.00 | 2 | 0.01 | 2 | 0.01 | 1 |
Jawa Timur | 6 | 0.03 | 1 | 0.01 | 7 | 0.04 | 0.748 | 36 | 0.27 | 67 | 0.51 | 103 | 0.78 | .*** | 117 | 0.34 | 2179 | 6.24 | 2296 | 6.57 | .*** |
Kalimantan Barat | no obs | 19 | 0.14 | 24 | 0.18 | 43 | 0.33 | 0.4244 | 15 | 0.04 | 72 | 0.21 | 87 | 0.25 | 0.2757 | ||||||
Kalimantan Selatan | 0 | 0.00 | 3 | 0.02 | 3 | 0.02 | not valid | 5 | 0.04 | 18 | 0.14 | 23 | 0.18 | 0.6652 | 3 | 0.01 | 88 | 0.25 | 91 | 0.26 | 0.8374 |
Kalimantan Tengah | 5 | 0.03 | 3 | 0.02 | 8 | 0.04 | 0.8019 | 128 | 0.97 | 264 | 2.01 | 392 | 2.99 | 0.3987 | 6 | 0.02 | 88 | 0.25 | 94 | 0.27 | 0.0673 |
Kalimantan Timur | 33 | 0.18 | 87 | 0.46 | 120 | 0.64 | 0.5636 | 6 | 0.05 | 120 | 0.91 | 126 | 0.96 | 0.519 | 2 | 0.01 | 74 | 0.21 | 76 | 0.22 | 0.6064 |
Kalimantan Utara | no obs | 4 | 0.03 | 29 | 0.22 | 33 | 0.25 | 0.4386 | 1 | 0.00 | 6 | 0.02 | 7 | 0.02 | 0.525 | ||||||
Kepulauan Bangka Belitung | 10 | 0.05 | 9 | 0.05 | 19 | 0.10 | 0.7008 | 2 | 0.02 | 3 | 0.02 | 5 | 0.04 | 0.9701 | no obs | ||||||
Kepulauan Riau | no obs | 2 | 0.02 | 1 | 0.01 | 3 | 0.02 | 0.9231 | 1 | 0.00 | 241 | 0.69 | 242 | 0.69 | 0.3328 | ||||||
Lampung | 140 | 0.74 | 79 | 0.42 | 219 | 1.16 | 0.201 | 103 | 0.78 | 574 | 4.37 | 677 | 5.16 | 0.299 | 82 | 0.23 | 231 | 0.66 | 313 | 0.90 | 0.0934 |
Maluku | no obs | 81 | 0.62 | 227 | 1.73 | 308 | 2.35 | 0.493 | no obs | ||||||||||||
Maluku Utara | no obs | no obs | 11 | 0.03 | 35 | 0.10 | 46 | 0.13 | 0.6502 | ||||||||||||
Nusa Tenggara Barat | 19 | 0.10 | 9 | 0.05 | 28 | 0.15 | 0.322 | 519 | 3.95 | 138 | 1.05 | 657 | 5.00 | 0.6449 | 115 | 0.33 | 467 | 1.34 | 582 | 1.67 | 0.3561 |
Nusa Tenggara Timur | no obs | 2 | 0.02 | 5 | 0.04 | 7 | 0.05 | 0.7653 | no obs | ||||||||||||
Papua | 1 | 0.01 | 27 | 0.14 | 28 | 0.15 | too few | no obs | no obs | ||||||||||||
Papua Barat | 1 | 0.01 | 1 | 0.01 | 2 | 0.01 | too few | no obs | no obs | ||||||||||||
Riau | 0 | 0.00 | 1 | 0.01 | 1 | 0.01 | not valid | 68 | 0.52 | 0 | 0.00 | 68 | 0.52 | 1 | no obs | ||||||
Sulawesi Barat | 0 | 0.00 | 1 | 0.01 | 1 | 0.01 | not valid | no obs | 10 | 0.03 | 150 | 0.43 | 160 | 0.46 | 0.137 | ||||||
Sulawesi Selatan | no obs | 39 | 0.30 | 100 | 0.76 | 139 | 1.06 | 0.6474 | no obs | ||||||||||||
Sulawesi Tengah | 155 | 0.82 | 351 | 1.86 | 506 | 2.69 | 0.7022 | 189 | 1.44 | 290 | 2.21 | 479 | 3.65 | 0.2494 | 51 | 0.15 | 1218 | 3.49 | 1269 | 3.63 | 0.1985 |
Sulawesi Tenggara | 2 | 0.01 | 0 | 0.00 | 2 | 0.01 | not valid | 18 | 0.14 | 33 | 0.25 | 51 | 0.39 | 0.4947 | 2 | 0.01 | 14 | 0.04 | 16 | 0.05 | 0.5813 |
Sulawesi Utara | no obs | 0 | 0.00 | 3 | 0.02 | 3 | 0.02 | too few | 0 | 0.00 | 2 | 0.01 | 2 | 0.01 | 1 | ||||||
Sumatera Barat | 0 | 0.00 | 4 | 0.02 | 4 | 0.02 | too few | no obs | no obs | ||||||||||||
Sumatera Selatan | 0 | 0.00 | 1 | 0.01 | 1 | 0.01 | not valid | 3 | 0.02 | 17 | 0.13 | 20 | 0.15 | 0.486 | 26 | 0.07 | 312 | 0.89 | 338 | 0.97 | 0.204 |
Sumatera Utara | no obs | 1 | 0.01 | 1 | 0.01 | 2 | 0.02 | 1 | no obs | ||||||||||||
Total | 5168 | 27.44 | 13,664 | 72.56 | 18,832 | 100.00 | 0.56 | 4332 | 33 | 8797 | 67.00 | 13,129 | 100.00 | 0.49 | 1988 | 5.69 | 32,936 | 94.31 | 34,924 | 100.00 | 0.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rinawan, F.R.; Faza, A.; Susanti, A.I.; Purnama, W.G.; Indraswari, N.; Didah; Ferdian, D.; Fatimah, S.N.; Purbasari, A.; Zulianto, A.; et al. Posyandu Application for Monitoring Children Under-Five: A 3-Year Data Quality Map in Indonesia. ISPRS Int. J. Geo-Inf. 2022, 11, 399. https://doi.org/10.3390/ijgi11070399
Rinawan FR, Faza A, Susanti AI, Purnama WG, Indraswari N, Didah, Ferdian D, Fatimah SN, Purbasari A, Zulianto A, et al. Posyandu Application for Monitoring Children Under-Five: A 3-Year Data Quality Map in Indonesia. ISPRS International Journal of Geo-Information. 2022; 11(7):399. https://doi.org/10.3390/ijgi11070399
Chicago/Turabian StyleRinawan, Fedri Ruluwedrata, Afina Faza, Ari Indra Susanti, Wanda Gusdya Purnama, Noormarina Indraswari, Didah, Dani Ferdian, Siti Nur Fatimah, Ayi Purbasari, Arief Zulianto, and et al. 2022. "Posyandu Application for Monitoring Children Under-Five: A 3-Year Data Quality Map in Indonesia" ISPRS International Journal of Geo-Information 11, no. 7: 399. https://doi.org/10.3390/ijgi11070399
APA StyleRinawan, F. R., Faza, A., Susanti, A. I., Purnama, W. G., Indraswari, N., Didah, Ferdian, D., Fatimah, S. N., Purbasari, A., Zulianto, A., Sari, A. N., Yulita, I. N., Rabbi, M. F. A., & Ridwana, R. (2022). Posyandu Application for Monitoring Children Under-Five: A 3-Year Data Quality Map in Indonesia. ISPRS International Journal of Geo-Information, 11(7), 399. https://doi.org/10.3390/ijgi11070399