A Fine-Grained Simulation Study on the Incidence Rate of Dysentery in Chongqing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials Sources and Processing
2.2.1. Incidence Rate of Dysentery in Chongqing
2.2.2. Socioeconomic Factor Data
2.2.3. Meteorological Factor Data
2.2.4. Topographic Factor Data
2.2.5. Air Quality Factor Data
2.2.6. Data Integration
2.3. Methods
- (a)
- Calculate the negative gradient for each sample (xi, yi) (). The obtained residual rim is taken as the new true value of the sample, and (xi, rim) () is obtained as the training data of the next tree, then a new regression tree fm(x) is obtained along with its corresponding Rjm (). J is the number of leaf nodes in the regression tree.
- (b)
- Calculate the best fitting value for the leaf area J.
- (c)
- Update the strong learner.
3. Results
3.1. Evaluating the Quality of the Model
3.2. Dysentery Incidence Rate Grained Scale Product (1 km)
3.3. Covariate Importance and Correlation Analysis
4. Discussion
4.1. Comparison with Other Models
4.2. Comparison with Other Studies on the Influencing Factors of Dysentery
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kotloff, K.L.; Riddle, M.S.; Platts-Mills, J.A.; Pavlinac, P.; Zaidi, A.K. Shigellosis. Lancet 2018, 391, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Holt, K.E.; Baker, S.; Weill, F.X.; Holmes, E.C.; Kitchen, A.; Yu, J.; Sangal, V.; Brown, D.J.; Coia, J.E.; Kim, D.W.; et al. Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nat. Genet. 2012, 44, 1056–1059. [Google Scholar] [CrossRef]
- Khezzani, B.; Baymakova, M.; Khechekhouche, E.A.; Ghezal, K.; Meziou, Z.; Brahim, A.B. Incidence rates of dysentery among humans in Lemghaier province, Algeria. Germs 2022, 12, 195–202. [Google Scholar] [CrossRef]
- Xin, X.; Jia, J.; Hu, X.; Han, Y.; Liang, J.; Jiang, F. Association between floods and the risk of dysentery in China: A meta-analysis. Int. J. Biometeorol. 2021, 65, 1245–1253. [Google Scholar] [CrossRef]
- Du, Z.; Zhang, J.; Lu, J.X.; Lu, L.P. Association between distribution of bacillary dysentery and meteorological factors in Beijing, 2004–2015. Zhonghua Liu Xing Bing Xue Za Zhi 2018, 39, 656–660. [Google Scholar] [PubMed]
- Zhang, R.; Guo, Z.; Meng, Y.; Wang, S.; Li, S.; Niu, R.; Wang, Y.; Guo, Q.; Li, Y. Comparison of ARIMA and LSTM in Forecasting the Incidence of HFMD Combined and Uncombined with Exogenous Meteorological Variables in Ningbo, China. Int. J. Environ. Res. Public Health 2021, 18, 6174. [Google Scholar] [CrossRef] [PubMed]
- Mbuyi, W.M.G.; Mandja, B.M.; Ilunga, B.K. Spatio-temporal dynamics of bacillary dysentery outbreaks in Democratic Republic of the Congo, 1999–2013. Rev. D Epidemiol. Et De Sante Publique 2021, 69, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, C.; Xiao, G.; Qiao, J.; Zhang, C. Spatial heterogeneity of bacillary dysentery and the impact of temperature in the Beijing-Tianjin-Hebei region of China. Int. J. Biometeorol. 2021, 65, 1919–1927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, J.; Chang, Z.R.; Li, Z.J. Temporal-spatial analysis of bacillary dysentery in the Three Gorges Area of China, 2005–2016. Zhonghua Liu Xing Bing Xue Za Zhi 2018, 39, 47–53. [Google Scholar]
- Bahrami, G.; Sajadi, H.; Rafiee, H.; Norouzi, M.; Shakiba, A. Prediction of the Impacts of Climate Change on the Geographical Distribution of Dysentery in Iran. Chin. J. Urban Environ. Stud. 2022, 10, 2250018. [Google Scholar] [CrossRef]
- Zuo, S.; Yang, L.; Dou, P.; Ho, H.C.; Dai, S.; Ma, W.; Ren, Y.; Huang, C. The direct and interactive impacts of hydrological factors on bacillary dysentery across different geographical regions in central China. Sci. Total Environ. 2021, 764, 144609. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wen, T.; Xing, D.; Zhang, Y. Associations between floods and bacillary dysentery cases in main urban areas of Chongqing, China, 2005–2016: A retrospective study. Environ. Health Prev. Med. 2021, 26, 1–9. [Google Scholar] [CrossRef]
- Xu, C.; Xiao, G.; Wang, J.; Zhang, X.; Liang, J. Spatiotemporal Risk of Bacillary Dysentery and Sensitivity to Meteorological Factors in Hunan Province, China. Int. J. Environ. Res. Public Health 2018, 15, 47. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.J.; Zhang, X.J.; Hou, X.X.; Xu, S.; Zhang, J.S.; Song, H.B.; Lin, H.L. Nonlinear and threshold of the association between meteorological factors and bacillary dysentery in Beijing, China. Epidemiol. Infect. Gastrointest. Tract 2015, 143, 3510–3519. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, T.; Liu, L.; Lv, Q.; Yin, F. Spatio-Temporal Pattern and Socio-Economic Factors of Bacillary Dysentery at County Level in Sichuan Province, China. Sci. Rep. 2015, 5, 15264. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Ding, G.; Jiang, B.; Li, X.; Zhou, M.; Zhang, Y.; Liu, Q. Meteorological Variables and Bacillary Dysentery Cases in Changsha City, China. Am. J. Trop. Med. Hyg. 2014, 90, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, L.; Sun, W.; Hou, X.; Yang, H.; Sun, L.; Xu, S.; Sun, Q.; Zhang, J.; Song, H.; et al. Identifying high-risk areas of bacillary dysentery and associated meteorological factors in Wuhan, China. Sci. Rep. 2013, 3, 3239. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Kanji, S.; Wang, L. The impact of rainfall and temperature variation on diarrheal prevalence in Sub-Saharan Africa. Appl. Geogr. 2012, 33, 63–72. [Google Scholar] [CrossRef]
- Chou, W.-C.; Wu, J.-L.; Wang, Y.-C.; Huang, H.; Sung, F.-C.; Chuang, C.-Y. Modeling the impact of climate variability on diarrhea-associated diseases in Taiwan (1996–2007). Sci. Total Environ. 2010, 409, 43–51. [Google Scholar] [CrossRef]
- Wan, H.; Yoon, J.; Srikrishnan, V.; Daniel, B.; Judi, D. Landscape metrics regularly outperform other traditionally-used ancillary datasets in dasymetric mapping of population. Comput. Environ. Urban Syst. 2023, 99, 101899. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, J.; Ge, Y. Mapping monthly population distribution and variation at 1-km resolution across China. Int. J. Geogr. Inf. Sci. 2022, 36, 1166–1184. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, G.; Ge, Y.; Xu, Z. Mapping Gridded Gross Domestic Product Distribution of China Using Deep Learning with Multiple Geospatial Big Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1791–1802. [Google Scholar] [CrossRef]
- Xiao, G.; Xu, C.; Wang, J.; Yang, D.; Wang, L. Spatial-temporal pattern and risk factor analysis of bacillary dysentery in the Beijing-Tianjin-Tangshan urban region of China. BMC Public Health 2014, 14, 998. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gu, X.; Wang, L.; Zhou, Y.; Huang, Z.; Xu, C.; Cheng, C. Spatiotemporal variations in the incidence of bacillary dysentery and long-term effects associated with meteorological and socioeconomic factors in China from 2013 to 2017. Sci. Total Environ. 2021, 755, 142626. [Google Scholar] [CrossRef] [PubMed]
- Deryugina, T.; Heutel, G.; Miller, N.H.; Molitor, D.; Reif, J. The mortality and medical costs of air pollution: Evidence from changes in wind direction. Am. Econ. Rev. 2019, 109, 4178–4219. [Google Scholar] [CrossRef]
- Han, X.; Zhang, W.; Cui, X.; Ma, H.; Liu, Y.; Zhang, X.; Zhao, X.; Li, S.; Ren, X. Effects of ambient temperature and air pollutants on bacillary dysentery from 2014 to 2017 in Lanzhou, China. Available online: https://www.researchsquare.com/article/rs-4357/v2 (accessed on 8 July 2023).
- Tu, W.; Liu, Z.; Du, Y.; Yi, J.; Liang, F.; Wang, N.; Qian, J.; Huang, S.; Wang, H. An ensemble method to generate high-resolution gridded population data for China from digital footprint and ancillary geospatial data. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102709. [Google Scholar] [CrossRef]
- Huang, C.-J.; Kuo, P.-H. A Deep CNN-LSTM Model for Particulate Matter (PM2.5) Forecasting in Smart Cities. Sensors 2018, 18, 2220. [Google Scholar] [CrossRef]
- Mohan, A.; Chen, Z.; Weinberger, K. Web-Search Ranking with Initialized Gradient Boosted Regression Trees. Proc. Learn. Rank. Chall. PMLR 2011, 14, 77–89. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, K.; Chen, Z.; Liu, S.; Chang, Z. An Improved Time-Series DMSP-OLS-Like Data (1992–2021) in China by Integrating DMSP-OLS and SNPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Ding, Y.; Peng, S. Spatiotemporal Trends and Attribution of Drought across China from 1901–2100. Sustainability 2020, 12, 477. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Peng, S.; Gang, C.; Cao, Y.; Chen, Y. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100. Int. J. Climatol. 2018, 38, 2250–2264. [Google Scholar] [CrossRef]
- Peng, S.Z. 1-km Monthly Mean Temperature Dataset for China (1901–2021); National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Wexler, A. Vapor pressure formulation for water in range 0 to 100 C. A revision. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 1976, 80, 775. [Google Scholar] [CrossRef]
- Cohen, I.; Huang, Y.; Chen, J.; Benesty, J. Pearson Correlation Coefficient; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
- Keola, S.; Andersson, M.; Hall, O. Monitoring Economic Development from Space: Using Nighttime Light and Land Cover Data to Measure Economic Growth. World Dev. 2015, 66, 322–334. [Google Scholar] [CrossRef]
- Shi, K.; Chen, Y.; Yu, B.; Xu, T.; Yang, C.; Li, L.; Huang, C.; Chen, Z.; Liu, R.; Wu, J. Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data. Appl. Energy 2016, 184, 450–463. [Google Scholar] [CrossRef]
- Sutton, P.C.; Elvidge, C.D.; Ghosh, T. Estimation of gross domestic product at sub-national scales using nighttime satellite imagery. Int. J. Ecol. Econ. Stat. 2007, 8, 5–21. [Google Scholar]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Ferrer, S.R.; Strina, A.; Jesus, S.R.; Ribeiro, H.C.; Cairncross, S.; Rodrigues, L.C.; Barreto, M.L. A hierarchical model for studying risk factors for childhood diarrhoea: A case–control study in a middle-income country. Int. J. Epidemiol. 2008, 37, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Si, Y.; Wang, X.; Gong, P. Environmental Drivers and Predicted Risk of Bacillary Dysentery in Southwest China. Int. J. Environ. Res. Public Health 2017, 14, 782. [Google Scholar] [CrossRef]
- Huang, D.; Guan, P.; Guo, J.; Wang, P.; Zhou, B. Investigating the effects of climate variations on bacillary dysentery incidence in northeast China using ridge regression and hierarchical cluster analysis. BMC Infect. Dis. 2008, 8, 130. [Google Scholar] [CrossRef]
- Zhang, Y.; Bi, P.; Hiller, J.E.; Sun, Y.; Ryan, P. Climate variations and bacillary dysentery in northern and southern cities of China. J. Infect. 2007, 55, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Checkley, W.; Epstein, L.D.; Gilman, R.H.; Figueroa, D.; Cama, R.I.; Patz, J.A.; Black, R.E. Effects of EI Niño and ambient temperature on hospital admissions for diarrhoeal diseases in Peruvian children. Lancet 2000, 355, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Black, R.E.; Lanata, C.F. Epidemiology of diarrheal diseases in developing countries. Infect. Gastrointest. Tract 1995, 2, 11–29. [Google Scholar]
- Singh, R.B.; Hales, S.; De Wet, N.; Raj, R.; Hearnden, M.; Weinstein, P. The influence of climate variation and change on diarrheal disease in the Pacific Islands. Environ. Health Perspect. 2001, 109, 155–159. [Google Scholar] [CrossRef]
- Hashizume, M.; Ben Armstrong, B.; Hajat, S.; Wagatsuma, Y.; Faruque, A.S.; Hayashi, T.; Sack, D.A. Association between climate variability and hospital visits for non-cholera diarrhoea in Bangladesh: Effects and vulnerable groups. Int. J. Epidemiol. 2007, 36, 1030–1037. [Google Scholar] [CrossRef]
- Zhang, Y.; Bi, P.; Hiller, J.E. Weather and the transmission of bacillary dysentery in Jinan, northern China: A time-series analysis. Public Health Rep. 2008, 123, 61–66. [Google Scholar] [CrossRef]
- Di, Q.; Wang, Y.; Zanobetti, A.; Wang, Y.; Koutrakis, P.; Choirat, C.; Dominici, F.; Schwartz, J.D. Air pollution and mortality in the Medicare population. N. Engl. J. Med. 2017, 376, 2513–2522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Si, Y.; Wang, X.; Gong, P. Patterns of bacillary dysentery in China, 2005–2010. Int. J. Environ. Res. Public Health 2016, 13, 164. [Google Scholar] [CrossRef] [PubMed]
Name | Format | Spatial Resolution | Temporal Resolution | Data Source |
---|---|---|---|---|
Incidence rate data of dysentery | Text | / | Year | Chongqing Municipal Health Commission |
Nighttime light dataset | Grid | 1 km | Year | HARVARD Dataverse |
Population | Grid | 1 km | Year | LandScan |
NDVI | Grid | 0.01745° (~1 km) | Month | National Earth System Science Data Center |
PM2.5 | Grid | 0.01745° (~1 km) | Year | |
PM10 | Grid | 0.01745° (~1 km) | Year | |
Temperature | Grid | 0.01745° (~1 km) | Month | |
Precipitation | Grid | 0.01745° (~1 km) | Month | National Tibetan Plateau Data Center |
Relative humidity | Grid | 1 km | Month | National Earth System Science Data Center/National Climatic Data Center |
DEM | Grid | 12.5 m | / | The Earth Science Data Systems |
Model | MAE (1/105) | RMSE (1/105) | R2 |
---|---|---|---|
IGBDT | 4.7024 | 6.2830 | 0.8368 |
RF | 5.9345 | 8.1928 | 0.7224 |
GBDT | 4.7260 | 6.6603 | 0.8166 |
Linear | 9.1378 | 11.9004 | 0.4143 |
SVM | 9.5465 | 11.487 | 0.4543 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, J.; Shen, J. A Fine-Grained Simulation Study on the Incidence Rate of Dysentery in Chongqing, China. ISPRS Int. J. Geo-Inf. 2023, 12, 459. https://doi.org/10.3390/ijgi12110459
Hao J, Shen J. A Fine-Grained Simulation Study on the Incidence Rate of Dysentery in Chongqing, China. ISPRS International Journal of Geo-Information. 2023; 12(11):459. https://doi.org/10.3390/ijgi12110459
Chicago/Turabian StyleHao, Jian, and Jingwei Shen. 2023. "A Fine-Grained Simulation Study on the Incidence Rate of Dysentery in Chongqing, China" ISPRS International Journal of Geo-Information 12, no. 11: 459. https://doi.org/10.3390/ijgi12110459
APA StyleHao, J., & Shen, J. (2023). A Fine-Grained Simulation Study on the Incidence Rate of Dysentery in Chongqing, China. ISPRS International Journal of Geo-Information, 12(11), 459. https://doi.org/10.3390/ijgi12110459