Deep Learning Application for Biodiversity Conservation and Educational Tourism in Natural Reserves
Abstract
:1. Introduction
- Implementation of the EfficientNet Lite4 Model: The integration of this model into the FloraBan mobile application facilitates the efficient identification of endemic plant species under challenging imaging conditions. This demonstrates the capability of the EfficientNet Lite4 model to adapt and function amid environmental factors that complicate visual recognition, such as variable lighting and similar backgrounds.
- Accuracy in Plant Image Classification: The application has demonstrated an accuracy rate exceeding 90% in classifying images of endemic plants in Santurbán. This accuracy is essential for reliable species identification and provides a robust tool for botanical research and environmental monitoring.
- Autonomous Functionality Without Internet Dependence: The application’s ability to operate autonomously, without requiring an Internet connection, is particularly relevant for use in remote areas. The tool can be utilized in locations with limited connectivity, such as the paramo of Santurbán, increasing its utility for field researchers and local communities.
- Contribution to Biodiversity Conservation and Advances in Botany: By applying emerging technologies, the study not only advances botanical science but also contributes to biodiversity conservation. The FloraBan application provides a useful tool to promote more conscious and educational tourism in the Santurbán paramo ecosystem, encouraging tourists and residents to recognize and value plant diversity, which in turn fosters greater understanding and conservation of the region’s natural resources.
2. Methodology
2.1. Study Site and Data Collection
2.2. Data Generation and Image Preprocessing
2.3. EfficientNet Architecture
2.4. Implementation in a Mobile Application for Plant Species Identification
2.4.1. Model Configuration and Training
2.4.2. Model Evaluation
3. Results
FloraBan: Mobile Application for Flora Identification in the Santurbán Paramo
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zárate-Rueda, R.; Beltrán-Villamizar, Y.I.; Murallas-Sánchez, D. Socioenvironmental conflicts and social representations surrounding mining extractivism at Santurban. Sci. Rep. 2022, 12, 9948. [Google Scholar] [CrossRef] [PubMed]
- Rey-Romero, D.C.; Domínguez, I.; Oviedo-Ocaña, E.R. Effect of agricultural activities on surface water quality from páramo ecosystems. Environ. Sci. Pollut. Res. 2022, 29, 83169–83190. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.C.; Lis-Gutiérrez, J.P.; Alguero, M.O. Minería ilegal en el Páramo de Santurbán y la Contaminación con Mercurio del agua de Bucaramanga y Santander. 2023. Available online: https://portales.vanguardia.com/especiales-vanguardia/contenido/mineria-ilegal-y-contaminacion-con-mercurio-en-el-paramo-de-santurban/ (accessed on 29 September 2024).
- Zárate Rueda, R.; Beltrán Villamizar, Y.I.; Becerra Ardila, L.E. Neo-Extractivism and Formalization of Artisanal and Small-Scale Mining—The Case of the Santurbán Moorland (Colombia). Sustainability 2023, 15, 11733. [Google Scholar] [CrossRef]
- Samal, R.; Dash, M. Ecotourism, biodiversity conservation and livelihoods: Understanding the convergence and divergence. Int. J. Geoherit. Parks 2023, 11, 1–20. [Google Scholar] [CrossRef]
- Iannucci, G.; Martellozzo, F.; Randelli, F. Sustainable development of rural areas: A dynamic model in between tourism exploitation and landscape decline. J. Evol. Econ. 2022, 32, 991–1016. [Google Scholar] [CrossRef]
- Sabogal, A. The Paramo Ecosystems. In Ecosystem and Species Adaptations in the Andean-Amazonian Region: Traditional Land-Use Systems in Peru; Springer: Cham, Switzerland, 2023; pp. 105–130. [Google Scholar]
- Serrano, M.R.; Serrano, Y.T.R. Incidencias de la Resolución no. 2090 de 2014 del Ministerio de Ambiente y Desarrollo Sostenible, Frente a los Derechos Adquiridos de Propietarios–Caso Páramo de Santurbán. Hipótesis Libre, no. 11. 2017. Available online: https://revistas.unilibre.edu.co/index.php/hipotesis_libre/article/view/3740 (accessed on 5 May 2022).
- Serrano Frattali, J.P. Los Derechos de Participación Ciudadana en la Resolución de los Conflictos Socioambientales: El Caso del Páramo de Santurbán. Visioni LatinoAmericane. Available online: https://www.openstarts.units.it/bitstream/10077/29488/8/Visioni_Latinoamericane_n.22_gennaio_2020.pdf (accessed on 5 May 2022).
- Sørensen, F.; Grindsted, T.S. Sustainability approaches and nature tourism development. Ann. Tour. Res. 2021, 91, 103307. [Google Scholar] [CrossRef]
- Alfonso, G.-M.J.; Jorge, S.-M.; Orlando, G.-M.J. Health Tourism: An Economic Alternative for Norte de Santander. J. Lang. Linguist. Stud. 2022, 18. Available online: https://www.jlls.org/index.php/jlls/article/view/4760/1548 (accessed on 5 March 2023).
- Pereira, V.; Silva, G.M.; Dias, Á. Sustainability practices in hospitality: Case study of a luxury hotel in Arrábida Natural Park. Sustainability 2021, 13, 3164. [Google Scholar] [CrossRef]
- Felipe-Lucia, M.R.; de Frutos, A.; Comín, F.A. Modelling landscape management scenarios for equitable and sustainable futures in rural areas based on ecosystem services. Ecosyst. People 2022, 18, 76–94. [Google Scholar] [CrossRef]
- Qian, M.; Huang, Y.; Cao, Y.; Wu, J.; Xiong, Y. Ecological network construction and optimization in Guangzhou from the perspective of biodiversity conservation. J. Environ. Manag. 2023, 336, 117692. [Google Scholar] [CrossRef]
- Valencia, J.B.; Mesa, J.; León, J.G.; Madriñán, S.; Cortés, A.J. Climate vulnerability assessment of the espeletia complex on Páramo Sky Islands in the Northern Andes. Front. Ecol. Evol. 2020, 8, 565708. [Google Scholar] [CrossRef]
- Koo, H.; Kleemann, J.; Cuenca, P.; Noh, J.K.; Fürst, C. Implications of landscape changes for ecosystem services and biodiversity: A national assessment in Ecuador. Ecosyst. Serv. 2024, 69, 101652. [Google Scholar] [CrossRef]
- Pavlidis, G.; Solomou, A.; Stamouli, S.; Papavassiliou, V.; Kritsis, K.; Kiourt, C.; Sevetlidis, V.; Karetsos, G.; Trigas, P.; Kougioumoutzis, K. Sustainable ecotourism through cutting-edge technologies. Sustainability 2022, 14, 800. [Google Scholar] [CrossRef]
- Shivaprakash, K.N.; Swami, N.; Mysorekar, S.; Arora, R.; Gangadharan, A.; Vohra, K.; Jadeyegowda, M.; Kiesecker, J.M. Potential for artificial intelligence (AI) and machine learning (ML) applications in biodiversity conservation, managing forests, and related services in India. Sustainability 2022, 14, 7154. [Google Scholar] [CrossRef]
- Ordóñez, M.D.; Gómez, A.; Ruiz, M.; Ortells, J.M.; Niemi-Hugaerts, H.; Juiz, C.; Jara, A.; Butler, T.A. IoT Technologies and Applications in Tourism and Travel Industries. In Internet of Things–The Call of the Edge; River Publishers: Aalborg, Denmark, 2022; pp. 341–360. [Google Scholar]
- Ditria, E.M.; Buelow, C.A.; Gonzalez-Rivero, M.; Connolly, R.M. Artificial intelligence and automated monitoring for assisting conservation of marine ecosystems: A perspective. Front. Mar. Sci. 2022, 9, 918104. [Google Scholar] [CrossRef]
- Brauman, K.A.; Garibaldi, L.A.; Polasky, S.; Aumeeruddy-Thomas, Y.; Brancalion, P.H.S.; DeClerck, F.; Jacob, U.; Mastrangelo, M.E.; Nkongolo, N.V.; Palang, H. Global trends in nature’s contributions to people. Proc. Natl. Acad. Sci. USA 2020, 117, 32799–32805. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, J.; Guo, H. Development evaluation of nature reserves under China’s forestry department: A spatiotemporal empirical study at the province level. Nat. Conserv. 2021, 44, 81–97. [Google Scholar] [CrossRef]
- Aliyah, L.; Lukita, C.; Pangilinan, G.A.; Chakim, M.H.R.; Saputra, D.B. Examining the Impact of Artificial Intelligence and Internet of Things on Smart Tourism Destinations: A Comprehensive Study. Aptisi Trans. Technopreneurship 2023, 5, 135–145. [Google Scholar] [CrossRef]
- Rane, N.; Choudhary, S.; Rane, J. Sustainable tourism development using leading-edge Artificial Intelligence (AI), Blockchain, Internet of Things (IoT), Augmented Reality (AR) and Virtual Reality (VR) technologies. Blockchain, Internet of Things (IoT), Augmented Reality (AR) and Virtual Reality (VR) technologies. SSRN Electron. J. 2023. [Google Scholar] [CrossRef]
- Raihan, A. Artificial intelligence and machine learning applications in forest management and biodiversity conservation. Nat. Resour. Conserv. Res. 2023, 6, 3825. [Google Scholar] [CrossRef]
- Mangina, E.; Burke, E.; Matson, R.; O’Briain, R.; Caffrey, J.M.; Saffari, M. Plant Species Detection Using Image Processing and Deep Learning: A Mobile-Based Application. In Information and Communication Technologies for Agriculture—Theme II: Data; Springer: Berlin, Germany, 2022; pp. 103–130. [Google Scholar]
- Malik, O.A.; Ismail, N.; Hussein, B.R.; Yahya, U. Automated real-time identification of medicinal plants species in natural environment using deep learning models—A case study from Borneo Region. Plants 2022, 11, 1952. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Kumar, V. AgriDet: Plant Leaf Disease severity classification using agriculture detection framework. Eng. Appl. Artif. Intell. 2023, 119, 105754. [Google Scholar] [CrossRef]
- Tiwari, V.; Joshi, R.C.; Dutta, M.K. Dense convolutional neural networks based multiclass plant disease detection and classification using leaf images. Ecol. Inform. 2021, 63, 101289. [Google Scholar] [CrossRef]
- Pelayo, R.C.; Llambí, L.D.; Gámez, L.E.; Barrios, Y.C.; Ramirez, L.A.; Torres, J.E.; Cuesta, F. Plant phenology dynamics and pollination networks in summits of the High Tropical Andes: A baseline for monitoring climate change impacts. Front. Ecol. Evol. 2021, 9, 679045. [Google Scholar] [CrossRef]
- Diazgranados, M. A nomenclator for the frailejones (Espeletiinae cuatrec. Asteraceae). PhytoKeys 2012, 1, 1–52. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, C.; Halliday, P.; Wilmot-Dear, M.; Jones, S.W. Generic and sectional limits in Senecio (Compositae): I. Progress report. Kew. Bull. 1977, 32, 47–67. [Google Scholar] [CrossRef]
- Aparicio Vásquez, D.L. Evolutionary Processes Underlying Plant Diversification in the Tropical Andean Highlands. Ph.D. Thesis, Charles University, Prague, Czech Republic, 2018. [Google Scholar]
- Mendoza, H.; Ramirex, B.; Jiménez, L.C. Guía Ilustrada de Géneros. Bogotá, Colombia; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2004. [Google Scholar]
- Rangel-Ch, J.O. La Región Paramuna y Franja Aledaña en Colombia. In Colombia Diversidad Biótica III: La Región de Vida Paramuna; Universidad Nacional de Colombia, Editorial Unibiblos: Bogotá DC, Colombia, 2000; pp. 1–23. Available online: https://www.researchgate.net/publication/339458087_LA_REGION_PARAMUNA_Y_FRANJA_ALEDANA_EN_COLOMBIA (accessed on 6 March 2024).
- JBB Herbarium. Herbario JBB en línea–Jardín Botánico José Celestino Mutis. 2022. Available online: https://herbario.jbb.gov.co/especimen/7756 (accessed on 29 September 2024).
- Betancur, J.; Callejas, R. Sinopsis del género Puya (Bromeliaceae) en el departamento de Antioquia. Caldasia 1997, 19, 71–82. Available online: https://www.jstor.org/stable/44241959 (accessed on 29 September 2024).
- Juniperinum, H. Ecología comparada de Hypericum laricifolium Juss. y de H. juniperinum Kunth en el valle fluvioglacial del Páramo de Mucubají. Mérida, Venezuela. Ecotrópicos 2008, 21, 75–88. [Google Scholar]
- Chuquimaco, I.H. Avances de la sinopsis taxonómica y etnobotánica de la familia Ericaceae en el departamento del Cusco. Acta Biol. Herreriana 2010, 1, 25–34. Available online: https://www.researchgate.net/profile/Jose-Franco-Navia/publication/270822721_EL_CARIOTIPO_DE_Galea_musteloides_Y_SUS_DIFERENCIAS_CON_LOS_DE_Cavia_porcellus_y_Cavia_tschudii_MAMMALIA_RODENTIA_CAVIIDAE.pdf#page=30 (accessed on 6 March 2024).
- Gerard, R.V.; MacLean, D.B. GC/MS examination of four Lycopodium species for alkaloid content. Phytochemistry 1986, 25, 1143–1150. [Google Scholar] [CrossRef]
- Vasco, A. Taxonomic revision of Elaphoglossum subsection Muscosa (Dryopteridaceae). Blumea-Biodivers. Evol. Biogeogr. Plants 2011, 56, 165–202. [Google Scholar] [CrossRef]
- Beck, M.A.; Liu, C.-Y.; Bidinosti, C.P.; Henry, C.J.; Godee, C.M.; Ajmani, M. An embedded system for the automated generation of labeled plant images to enable machine learning applications in agriculture. PLoS ONE 2020, 15, e0243923. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks. In International Conference on Machine Learning; PMLR: Corvallis, OR, USA, 2019; pp. 6105–6114. [Google Scholar]
- Körber, N.; Kromer, E.; Siebert, A.; Hauke, S.; Mueller-Gritschneder, D. EGIC: Enhanced Low-Bit-Rate Generative Image Compression Guided by Semantic Segmentation. arXiv 2023, arXiv:2309.03244. [Google Scholar]
- Pérez Arteaga, S.; Sandoval Orozco, A.L.; García Villalba, L.J. Analysis of Machine Learning Techniques for Information Classification in Mobile Applications. Appl. Sci. 2023, 13, 5438. [Google Scholar] [CrossRef]
- Babu, A.; Rustamov, Z.; Turaev, S. Intelligent Touchless System Based On Gesture Recognition. J. Theor. Appl. Inf. Technol. 2023, 101, 3936–3942. [Google Scholar]
- Duong, L.T.; Tran, T.B.; Le, N.H.; Ngo, V.M.; Nguyen, P.T. Automatic detection of weeds: Synergy between EfficientNet and transfer learning to enhance the prediction accuracy. Soft Comput. 2024, 28, 5029–5044. [Google Scholar] [CrossRef]
- Vera, D.B.; Oviedo, B.; Casanova, W.C.; Zambrano-Vega, C. Deep Learning-Based Computational Model for Disease Identification in Cocoa Pods (Theobroma cacao L.). arXiv 2024, arXiv:2401.01247. [Google Scholar]
- Pacheco-Prado, D.; Bravo-López, E.; Ruiz, L.Á. Tree Species Identification in Urban Environments Using TensorFlow Lite and a Transfer Learning Approach. Forests 2023, 14, 1050. [Google Scholar] [CrossRef]
- Marzougui, F.; Elleuch, M.; Kherallah, M. A deep CNN Approach for Plant Disease Detection. In Proceedings of the 2020 21st International Arab Conference on Information Technology (ACIT), Tunis, Tunisia, 28–30 November 2020; pp. 1–6. [Google Scholar]
- Lee, C.P.; Lim, K.M.; Song, Y.X.; Alqahtani, A. Plant-CNN-ViT: Plant classification with ensemble of convolutional neural networks and vision transformer. Plants 2023, 12, 2642. [Google Scholar] [CrossRef]
- Liu, R. Higher Accuracy on Vision Models with EfficientNet-Lite. 2020. Available online: https://blog.tensorflow.org/2020/03/higher-accuracy-on-vision-models-with-efficientnet-lite.html (accessed on 7 November 2023).
- Alomar, K.; Aysel, H.I.; Cai, X. Data augmentation in classification and segmentation: A survey and new strategies. J. Imaging 2023, 9, 46. [Google Scholar] [CrossRef]
- Varoquaux, G.; Colliot, O. Evaluating Machine Learning Models and Their Diagnostic Value. In Machine Learning for Brain Disorders; Humana New York: New York, NY, USA, 2023; pp. 601–630. [Google Scholar] [CrossRef]
- Scikit-learn Developers: Classification Report and Confusion Matrix. 2023. Available online: https://scikit-learn.org/1.5/modules/generated/sklearn.metrics.classification_report.html (accessed on 8 November 2023).
- Dethlefs, N.; Cuayahuitl, H. User Engagement Triggers in Social Media Discourse on Biodiversity Conservation. ACM Trans. Soc. Comput. 2023, 7, 1–32. [Google Scholar] [CrossRef]
- Afzal, S.; Ghani, S.; Hittawe, M.M.; Rashid, S.F.; Knio, O.M.; Hadwiger, M.; Hoteit, I. Visualization and visual analytics approaches for image and video datasets: A survey. ACM Trans. Interact. Intell. Syst. 2023, 13, 1–41. [Google Scholar] [CrossRef]
- Bursa, S.Ö.; Durmaz İncel, Ö.; Işıklar Alptekin, G. Building lightweight deep learning models with TensorFlow Lite for human activity recognition on mobile devices. Ann. Telecommun. 2023, 78, 687–702. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, D.; Zeb, A.; Nanehkaran, Y.A. Identification of rice plant diseases using lightweight attention networks. Expert Syst Appl. 2021, 169, 114514. [Google Scholar] [CrossRef]
- Khan, M.N.; Gul, A.; Khan, F.; Khan, M.W.; Naz, A. Unlocking the Various Potentials: The Impact of Emerging Technologies on Enhancing Tourist Experiences and Sustainable Practices. Remit. Rev. 2024, 9, 498–510. [Google Scholar]
- McLean, G.; AlYahya, M.; Barhorst, J.B.; Osei-Frimpong, K. Examining the influence of virtual reality tourism on consumers’ subjective wellbeing. Tour Manag. Perspect. 2023, 46, 101088. [Google Scholar] [CrossRef]
- Gao, M.; Kong, J.; Song, K.; Wang, L. Environmental protection of rural ecotourism using PSR and MDP models. Soft Comput. 2023, 27, 19179–19195. [Google Scholar] [CrossRef]
- Rahmadian, E.; Feitosa, D.; Virantina, Y. Digital twins, big data governance, and sustainable tourism. Ethics Inf. Technol. 2023, 25, 61. [Google Scholar] [CrossRef]
- Duy, N.T.; Mondal, S.R.; Van, N.T.T.; Dzung, P.T.; Minh, D.X.H.; Das, S. A study on the role of web 4.0 and 5.0 in the sustainable tourism ecosystem of Ho Chi Minh City, Vietnam. Sustainability 2020, 12, 7140. [Google Scholar] [CrossRef]
- Van, N.T.T.; Vrana, V.; Duy, N.T.; Minh, D.X.H.; Dzung, P.T.; Mondal, S.R.; Das, S. The role of human–machine interactive devices for post-COVID-19 innovative sustainable tourism in Ho Chi Minh City, Vietnam. Sustainability 2020, 12, 9523. [Google Scholar] [CrossRef]
- Elshaer, A.M.; Marzouk, A.M. Memorable tourist experiences: The role of smart tourism technologies and hotel innovations. Tour. Recreat. Res. 2024, 49, 445–457. [Google Scholar] [CrossRef]
- Zheng, C.; Chen, Z.; Zhang, Y.; Guo, Y. Does Vivid Imagination Deter Visitation? The Role of Mental Imagery Processing in Virtual Tourism on Tourists’ Behavior. J. Travel Res. 2021, 61, 1528–1541. [Google Scholar] [CrossRef]
- Baloch, Q.B.; Shah, S.N.; Iqbal, N.; Sheeraz, M.; Asadullah, M.; Mahar, S.; Khan, A.U. Impact of tourism development upon environmental sustainability: A suggested framework for sustainable ecotourism. Environ. Sci. Pollut. Res. 2023, 30, 5917–5930. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiong, K.; Huang, D. Natural world heritage conservation and tourism: A review. Herit. Sci. 2023, 11, 55. [Google Scholar] [CrossRef]
Identification | Scientific Name | Description | Image |
---|---|---|---|
1 | Espeletia boyacensis Cuatrec [31] | A medium-sized frailejón, reaching heights of up to 60 cm. The leaves are leathery and succulent, with an oblanceolate blade measuring up to 45 cm in length, tapering at the base into a pseudo-petiole of 2 to 8 cm. They possess an acute apex, entire margins, and a prominent midrib on the abaxial surface. The inflorescence is axillary, oval, and hyaline, with flowers ranging from yellow to brown, and features pedicellate glands. | |
2 | Espeletia conglomerata A.C.Sm [31] | A medium-sized frailejón, reaching up to 2 m in height, characterized by a stem-like extension and a rosette approximately 50 cm in diameter. The rosette consists of broad leaves displaying green and yellow hues. It produces floral stems with yellow blooms that emerge from the center of the rosette. This species is native to Colombia, where it is found primarily in the departments of Boyacá, Santander, and Norte de Santander. | |
3 | Senecio niveoaureus Cuatrec [32,33] | This species belongs to the Asteraceae family and is similar to Frailejones. It is primarily cultivated as an ornamental plant in mountainous regions. It forms clusters of rosettes composed of soft, densely pubescent, silvery-white leaves that resemble “rabbit ears”. The inflorescences are yellow, with small, delicate petals. | |
4 | Arcytophyllum thymifo-lium (Ruiz & Pav.) Standl [34] | A pulvinate shrub with opposite, sessile, coriaceous, oblong-linear leaves, featuring sheathing stipules. The flowers are solitary, axillary, hermaphroditic, actinomorphic, tetramerous, and epigynous. The hypanthium is ovoid, and the calyx is lobed with persistent intercalycular teeth. The corolla is hypocrateriform and white. The androecium consists of epipetalous stamens inserted into the corolla tube. The gynoecium contains a bilocular ovary and a bifid stigma. The fruit is a septicidal capsule, crowned by sepals and intercalycular teeth. | |
5 | Monticalia vernicosa (Sch.Bip. ex Wedd.) C.Jeffrey [35] | Woody plant in the form of a shrub, with slender leaves that resemble those of the plant commonly known as rosemary. It is a medium-sized shrub, not exceeding two meters in height, with a woody and dark-colored trunk. The leaves are alternate, ovate to oblong, with entire or finely denticulate margins, and have a pronounced petiole, very similar to those of the culinary rosemary. The inflorescences are yellow in color. | |
6 | Acaena cylindristachya Ruiz & Pav [36] | A rosette-forming herb with a white indumentum and small, inconspicuous flowers. This species tends to form dense, low-growing mats that can spread extensively, often creating a thick vegetative carpet. Its leaves are compound, composed of small, toothed leaflets, dark green in color, and arranged alternately along the stem. Although the flowers are diminutive, they are not particularly conspicuous. | |
7 | Puya asplundii L.B.Sm [37] | Puya is a perennial plant belonging to the Bromeliaceae family, with a rosette structure similar to that of aloe or pineapple. These are perennial herbs, acaulescent or with short stems, of medium stature (0.7 m), growing either solitarily or in clumps. Their leaves are arranged in rosettes and sheathed, with triangular or nearly triangular leaf blades and serrated margins. The inflorescence is scapose, simple or branched twice, with flowers arranged either loosely or densely. The flowers are perfect, pedicellate, trimerous, and hypogynous; they have 3 free sepals, shorter than the petals, tomentose to glabrescent, ranging from green to brown, and 3 spatulate petals, free, with an obtuse to rounded apex, pale yellow in color. | |
8 | Hypericum juniperinum (L.fil.) Kunth [38] | Small shrub with striking yellow flowers and a complex morphological variation in size, growing in high mountain areas. This terrestrial shrub reaches a height of 0.2 m, with erect to decumbent stems, initially quadrangular and later becoming rounded, exfoliating irregularly. Its leaves are simple, opposite, and decussate, with leaf blades measuring 6–14 × 1.5 mm, slightly imbricate at the base and with an acute apex. The flowers are yellow, solitary, and terminal, positioned on short axes. | |
9 | Alchemilla alpina L. [31] | Perennial herbaceous plant belonging to the Rosaceae family. This species has a rhizomatous base and arching stems measuring 10 to 20 cm in height. Its leaves are divided into 5 to 7 lanceolate leaflets, 2 to 3.5 cm in length, green and glabrous on the upper surface, and silvery and finely pubescent on the underside. The leaflets have small-toothed apices and long petioles. The flowers are medium-sized, about 20 mm in diameter, yellow in color, and arranged in dense glomerules. | |
10 | Disterigma empetrifo-lium (Kunth) Nied. ex Drude [39] | Dwarf, creeping shrub, often prostrate and rhizomatous, forming cushions only a few centimeters high. The stems are terete and dark brown, while the branches are subterete, angular, striated, and densely puberulent with white hairs. The rhizomes bear bracts resembling miniature leaves. The leaves are whorled, simple, congested, and imbricated, with subterete petioles measuring 0.5 to 1.5 mm in length, and canaliculated. The inflorescence is axillary and pink, with up to 6 bisexual flowers. The fruits are spherical, violet-colored berries. | |
11 | Lycopodium clavatum L. [40] | It is a toxic, creeping plant with numerous branches that can reach up to 20 cm in length. It belongs to the broad genus of lycopods, commonly known as ground pines, from the family Lycopodiaceae. These are non-flowering, vascular plants that can be terrestrial or epiphytic, characterized by their abundant branching. They can be erect, prostrate, or creeping, with tiny, simple, scaly, or spiky leaves that densely cover the stems and branches. | |
12 | Elaphoglossum engelii (H.Karst.) Christ [41] | It belongs to the fern genus within the Dryopteridaceae family. It is primarily epiphytic, though it is rarely found in a terrestrial form. The rhizome measures up to 12 mm in diameter, being shortly creeping or erect. The leaves, which range from 8 to 30 cm in length, are closely arranged. The petiole scales, 6 mm wide, are ovate to lanceolate, spreading, pale orange in color, and with eroded margins. The leaf blade measures between 6 and 20 cm in length and 2 to 5 cm in width, and is narrowly elliptical to lanceolate-ovate, with a subcoriaceous texture. The base is broadly cuneate to rounded, and the apex is obtuse. |
Model | Top-1 Accuracy on ImageNet (%) | Number of Parameters (Millions) |
---|---|---|
ResNet-152 | 77.8 | 60 |
EfficientNet-B1 | 79.1 | 7.8 |
ResNeXt-101 | 80.9 | 84 |
EfficientNet-B3 | 81.6 | 12 |
SENet | 82.7 | 146 |
NASNet-A | 82.7 | 89 |
EfficientNet-B4 | 82.9 | 19 |
GPipe | 84.3 | 556 |
EfficientNet-B7 | 84.3 | 66 |
Identification | Scientific Name | Confidence Level |
---|---|---|
1 | Espeletia boyacensis Cuatrec [31] | 85 |
2 | Espeletia conglomerata A.C.Sm [31] | 91 |
3 | Senecio niveoaureus Cuatrec [32,33] | 92 |
4 | Arcytophyllum thymifolium (Ruiz & Pav.) Standl [34] | 76 |
5 | Monticalia vernicosa (Sch.Bip. ex Wedd.) C.Jeffrey [35] | 78 |
6 | Acaena cylindristachya Ruiz & Pav [36] | 87 |
7 | Puya asplundii L.B.Sm [37] | 88 |
8 | Hypericum juniperinum (L.fil.) Kunth [38] | 88 |
9 | Alchemilla alpina L. [31] | 82 |
10 | Disterigma empetrifolium (Kunth) Nied. ex Drude [39] | 78 |
11 | Lycopodium clavatum L. [40] | 70 |
12 | Elaphoglossum engelii (H.Karst.) Christ [41] | 78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flórez, M.; Becerra, O.; Carrillo, E.; Villa, M.; Álvarez, Y.; Suárez, J.; Mendes, F. Deep Learning Application for Biodiversity Conservation and Educational Tourism in Natural Reserves. ISPRS Int. J. Geo-Inf. 2024, 13, 358. https://doi.org/10.3390/ijgi13100358
Flórez M, Becerra O, Carrillo E, Villa M, Álvarez Y, Suárez J, Mendes F. Deep Learning Application for Biodiversity Conservation and Educational Tourism in Natural Reserves. ISPRS International Journal of Geo-Information. 2024; 13(10):358. https://doi.org/10.3390/ijgi13100358
Chicago/Turabian StyleFlórez, Marco, Oscar Becerra, Eduardo Carrillo, Manny Villa, Yuli Álvarez, Javier Suárez, and Francisco Mendes. 2024. "Deep Learning Application for Biodiversity Conservation and Educational Tourism in Natural Reserves" ISPRS International Journal of Geo-Information 13, no. 10: 358. https://doi.org/10.3390/ijgi13100358
APA StyleFlórez, M., Becerra, O., Carrillo, E., Villa, M., Álvarez, Y., Suárez, J., & Mendes, F. (2024). Deep Learning Application for Biodiversity Conservation and Educational Tourism in Natural Reserves. ISPRS International Journal of Geo-Information, 13(10), 358. https://doi.org/10.3390/ijgi13100358