Spatial and Temporal Variation of GPP and Its Response to Urban Environmental Changes in Beijing
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sets
2.3. Methods
2.3.1. Theil−Sen’s Slope Estimator
2.3.2. Mann−Kendall Trend Test
2.3.3. Mann−Kendall (M-K) Mutation Test
2.3.4. Geographically Weighted Regression Method
2.3.5. Geographically and Temporally Weighted Regression
3. Results
3.1. Spatiotemporal Distribution and Variation of AGPP in Beijing
3.2. The Influence of Urban Environmental Factors on AGPP
4. Discussion
4.1. Spatiotemporal Distribution of AGPP in Beijing
4.2. Influence of LUCC on AGPP in Beijing
4.3. Influence of Environmental Factors on AGPP in Beijing
4.4. Influence of Pollutant Factors on AGPP in Beijing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nuarsa, I.; As-Syakur, A.; Gunadi, I.; Sukewijaya, I. Changes in Gross Primary Production (GPP) over the Past Two Decades Due to Land Use Conversion in a Tourism City. ISPRS Int. J. Geo-Inf. 2018, 7, 57. [Google Scholar] [CrossRef]
- Cui, Y.; Xiao, X.; Zhang, Y.; Dong, J.; Qin, Y.; Doughty, R.B.; Zhang, G.; Wang, J.; Wu, X.; Qin, Y.; et al. Temporal Consistency between Gross Primary Production and Solar-Induced Chlorophyll Fluorescence in the Ten Most Populous Megacity Areas over Years. Sci. Rep. 2017, 7, 14963. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, H.M.; Granja-Martins, F.M.; Pedras, C.M.G.; Fernandes, P.; Isidoro, J.M.G.P. An Assessment of Forest Fires and CO2 Gross Primary Production from 1991 to 2019 in Mação (Portugal). Sustainability 2021, 13, 5816. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Wagle, P.; Xiao, X.; Torn, M.S.; Cook, D.R.; Matamala, R.; Fischer, M.L.; Jin, C.; Dong, J.; Biradar, C. Sensitivity of Vegetation Indices and Gross Primary Production of Tallgrass Prairie to Severe Drought. Remote Sens. Environ. 2014, 152, 1–14. [Google Scholar] [CrossRef]
- Xu, B.; Li, J.; Luo, Z.; Wu, J.; Liu, Y.; Yang, H.; Pei, X. Analyzing the Spatiotemporal Vegetation Dynamics and Their Responses to Climate Change along the Ya’an–Linzhi Section of the Sichuan–Tibet Railway. Remote Sens. 2022, 14, 3584. [Google Scholar] [CrossRef]
- He, Z.; Yue, T.; Chen, Y.; Mu, W.; Xi, M.; Qin, F. Analysis of Spatial and Temporal Changes in Vegetation Cover and Driving Forces in the Yan River Basin, Loess Plateau. Remote Sens. 2023, 15, 4240. [Google Scholar] [CrossRef]
- Zheng, H.; Zheng, H. Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Coastal Area of Shandong Province. Ecol. Indic. 2023, 153, 110474. [Google Scholar] [CrossRef]
- Wang, S.; Xu, L.; Zhuang, Q.; He, N. Investigating the Spatio-Temporal Variability of Soil Organic Carbon Stocks in Different Ecosystems of China. Sci. Total Environ. 2021, 758, 143644. [Google Scholar] [CrossRef]
- Ziska, L.H.; Bunce, J.A.; Goins, E.W. Characterization of an Urban-Rural CO2/Temperature Gradient and Associated Changes in Initial Plant Productivity during Secondary Succession. Oecologia 2004, 139, 454–458. [Google Scholar] [CrossRef]
- Wei, S.; Chen, Q.; Wu, W.; Ma, J. Quantifying the Indirect Effects of Urbanization on Urban Vegetation Carbon Uptake in the Megacity of Shanghai, China. Environ. Res. Lett. 2021, 16, 064088. [Google Scholar] [CrossRef]
- Li, C.; Sun, G.; Cohen, E.; Zhang, Y.; Xiao, J.; McNulty, S.G.; Meentemeyer, R.K. Meentemeyer Modeling the Impacts of Urbanization on Watershed-Scale Gross Primary Productivity and Tradeoffs with Water Yield across the Conterminous United States. J. Hydrol. 2020, 583, 124581. [Google Scholar] [CrossRef]
- Liu, X.; Cui, Y.; Xiao, X.; Shi, Z.; Li, M.; Li, N.; Dong, J. Multi-Scale Analysis of Urbanization and Gross Primary Productivity during 2000–2018 in Beijing, China. Environ. Res. Lett. 2023, 19, 014023. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, B.; Zeng, H. How Does Urbanization Affect Vegetation Productivity in the Coastal Cities of Eastern China? Sci. Total Environ. 2022, 811, 152356. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cui, Y.; Li, W.; Li, M.; Li, N.; Shi, Z.; Dong, J.; Xiao, X. Urbanization Expands the Fluctuating Difference in Gross Primary Productivity between Urban and Rural Areas from 2000 to 2018 in China. Sci. Total Environ. 2023, 901, 166490. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A.; Yendrek, C.R.; Sitch, S.; Collins, W.J.; Emberson, L.D. The Effects of Tropospheric Ozone on Net Primary Productivity and Implications for Climate Change. Annu. Rev. Plant Biol. 2012, 63, 637–661. [Google Scholar] [CrossRef] [PubMed]
- Lombardozzi, D.; Sparks, P.; Bonan, B. Integrating O₃ Influences on Terrestrial Processes: Photosynthetic and Stomatal Response Data Available for Regional and Global Modeling. Biogeosciences 2013, 10, 6815–6831. [Google Scholar] [CrossRef]
- Gu, L.; Baldocchi, D.D.; Wofsy, S.C.; Munger, J.W.; Michalsky, J.J.; Urbanski, S.P.; Boden, T.A. Response of a Deciduous Forest to the Mount Pinatubo Eruption: Enhanced Photosynthesis. Science 2003, 299, 2035–2038. [Google Scholar] [CrossRef]
- Yue, X.; Unger, N. Fire Air Pollution Reduces Global Terrestrial Productivity. Nat. Commun. 2018, 9, 5413. [Google Scholar] [CrossRef]
- McDonnell, M.J.; Pickett, S.T.A.; Groffman, P.; Bohlen, P.; Pouyat, R.V.; Zipperer, W.C.; Parmelee, R.W.; Carreiro, M.M.; Medley, K. Ecosystem Processes Along an Urban-to-Rural Gradient. In Urban Ecology; Marzluff, J.M., Shulenberger, E., Endlicher, W., Alberti, M., Bradley, G., Ryan, C., Simon, U., ZumBrunnen, C., Eds.; Springer: Boston, MA, USA, 2008; pp. 299–313. ISBN 978-0-387-73411-8. [Google Scholar]
- Wang, S.; Ju, W.; Peñuelas, J.; Cescatti, A.; Zhou, Y.; Fu, Y.; Huete, A.; Liu, M.; Zhang, Y. Urban−rural Gradients Reveal Joint Control of Elevated CO2 and Temperature on Extended Photosynthetic Seasons. Nat. Ecol. Evol. 2019, 3, 1076–1085. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Charlton Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Huang, B.; Wu, B.; Barry, M. Geographically and Temporally Weighted Regression for Modeling Spatio-Temporal Variation in House Prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Sun, D.; Zhou, L.; Li, Y.; Liu, H.; Shen, X.; Wang, Z.; Wang, X. New-Type Urbanization in China: Predicted Trends and Investment Demand for 2015–2030. J. Geogr. Sci. 2017, 27, 943–966. [Google Scholar] [CrossRef]
- Fan, R.; Zhu, X.; Chen, Z.; Yu, G.; Zhang, W.; Han, L.; Wang, Q.; Chen, S.; Liu, S.; Wang, H.; et al. A dataset of annual gross primary productivity in China’s terrestrial ecosystems during 2000–2020. China Sci. Data 2023, 8, 1–13. [Google Scholar] [CrossRef]
- Dong, J.; Li, L.; Li, Y.; Yu, Q. Inter-Comparisons of Mean, Trend and Interannual Variability of Global Terrestrial Gross Primary Production Retrieved from Remote Sensing Approach. Sci. Total Environ. 2022, 822, 153343. [Google Scholar] [CrossRef] [PubMed]
- Ohlson, J.A.; Kim, S. Linear Valuation without OLS: The Theil-Sen Estimation Approach. Rev. Account. Stud. 2015, 20, 395–435. [Google Scholar] [CrossRef]
- Hamed, K.H.; Ramachandra Rao, A. A Modified Mann-Kendall Trend Test for Autocorrelated Data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Hussain, M.; Mahmud, I. pyMannKendall: A Python Package for Non Parametric Mann Kendall Family of Trend Tests. J. Open Source Softw. 2019, 4, 1556. [Google Scholar] [CrossRef]
- Wang, J. Determining the Most Accurate Program for the Mann-Kendall Method in Detecting Climate Mutation. Theor. Appl. Climatol. 2020, 142, 847–854. [Google Scholar] [CrossRef]
- Hurvich, C.M.; Tsai, C.-L. A Corrected Akaike Information Criterion for Vector Autoregressive Model Selection. J. Time Ser. Anal. 1993, 14, 271–279. [Google Scholar] [CrossRef]
- Murray, L.; Nguyen, H.; Lee, Y.-F.; Remmenga, M.; Smith, D. Variance Inflation Factors in Regression Models with Dummy Variables. Conf. Appl. Stat. Agric. 2012. [Google Scholar] [CrossRef]
- Deng, G.; Gao, J.; Jiang, H.; Li, D.; Wang, X.; Wen, Y.; Sheng, L.; He, C. Response of Vegetation Variation to Climate Change and Human Activities in Semi-Arid Swamps. Front. Plant Sci. 2022, 13, 990592. [Google Scholar] [CrossRef] [PubMed]
- Lü, Y.; Zhang, L.; Feng, X.; Zeng, Y.; Fu, B.; Yao, X.; Li, J.; Wu, B. Recent Ecological Transitions in China: Greening, Browning and Influential Factors. Sci. Rep. 2015, 5, 8732. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, T.; Yang, M.; Ying, W. Spatiotemporal Variation of Ecosystem Services Value Based on Gradient Analysis in Wuhan: 2000–2010. Acta Ecol. Sin. 2017, 37, 2118–2125. [Google Scholar]
- Liu, M.; Jiao, J.; Pan, J.; Song, J.; Che, Y.; Li, L. Spatial and Temporal Patterns of Planting NPP and Its Driving Factors in Qinghai Province. Acta Ecol. Sin. 2020, 40, 5306–5317. [Google Scholar]
- Zhang, X.; Wang, H.; Yan, H.; Ai, J. Analysis of Spatio-Temporal Changes of Gross Primary Productivity in China from 2001 to 2018 Based on Romote Sensing. Acta Ecol. Sin. 2021, 41, 6351–6362. [Google Scholar]
- Du Wen-li, S.; Wu, Y.; Song, Z. The Responses of Gross Primary Production to Drought in Terrestrial Ecosystems of China during 1980–2013. Chin. J. Ecol. 2020, 39, 23. [Google Scholar]
- Liang, W.; Yang, Y.; Fan, D.; Guan, H.; Zhang, T.; Long, D.; Zhou, Y.; Bai, D. Analysis of Spatial and Temporal Patterns of Net Primary Production and Their Climate Controls in China from 1982 to 2010. Agric. For. Meteorol. 2015, 204, 22–36. [Google Scholar] [CrossRef]
- Fu, Y.; Lu, X.; Zhao, Y.; Zeng, X.; Xia, L. Assessment Impacts of Weather and Land Use/Land Cover (LULC) Change on Urban Vegetation Net Primary Productivity (NPP): A Case Study in Guangzhou, China. Remote Sens. 2013, 5, 4125–4144. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, A.; Hu, X. Spatiotemporal Distribution of Vegetation Net Primary Productivity in Beijing-Tianjin-Hebei and Natural Driving Factors. Ecol. Environ. 2021, 30, 1158. [Google Scholar]
- Lukas, E.; Jonathan, A. Sherratt Effects of Precipitation Intermittency on Vegetation Patterns in Semi-Arid Landscapes. Phys. D Nonlinear Phenom. 2020, 405, 132396. [Google Scholar] [CrossRef]
- Xu, C.; McDowell, N.G.; Fisher, R.A.; Wei, L.; Sevanto, S.; Christoffersen, B.O.; Weng, E.; Middleton, R.S. Middleton Increasing Impacts of Extreme Droughts on Vegetation Productivity under Climate Change. Nat. Clim. Change 2019, 9, 948–953. [Google Scholar] [CrossRef]
- Huang, B.-K.; Xu, S.; Xuan, W.; Li, M.; Cao, Z.-Y.; Liu, K.-L.; Ling, T.-F.; Shen, W.-B. Carbon Monoxide Alleviates Salt-Induced Oxidative Damage in Wheat Seedling Leaves. J. Integr. Plant Biol. 2006, 48, 249–254. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Zhang, H.; Guo, D.; Sun, G. Atmospheric Nitrogen Dioxide at Different Concentrations Levels Regulates Growth and Photosynthesis of Tobacco Plants. J. Plant Interact. 2021, 16, 422–431. [Google Scholar] [CrossRef]
- Jion, M.M.M.F.; Jannat, J.N.; Mia, M.Y.; Ali, M.A.; Islam, M.S.; Ibrahim, S.M.; Pal, S.C.; Islam, A.; Sarker, A.; Malafaia, G.; et al. A Critical Review and Prospect of NO2 and SO2 Pollution over Asia: Hotspots, Trends, and Sources. Sci. Total Environ. 2023, 876, 162851. [Google Scholar] [CrossRef]
Data | Spatial Resolution | Temporal Resolution | Period | Data Source |
---|---|---|---|---|
AGPP | 500 m | Year | 2000–2020 | https://www.scidb.cn/en/detail?dataSetId=b496b208f51e44fcaf326e8b0f792c34, accessed on 9 February 2024 |
LST | 1 km | 8-day | 2014–2020 | https://ladsweb.modaps.eosdis.nasa.gov/, accessed on 9 February 2024 |
LUCC | 30 m | 5-year | 2000–2020 | https://www.resdc.cn/DOI/doi.aspx?DOIid=54, accessed on 7 March 2024 |
Air Temperature | 1 km | Month | 2014–2020 | http://loess.geodata.cn, accessed on 11 February 2024 |
Precipitation | 1 km | Month | 2014–2020 | http://loess.geodata.cn, accessed on 11 February 2024 |
PM2.5 | 1 km | Year | 2014–2020 | https://weijing-rs.github.io/product.html, accessed on 11 February 2024 |
CO | 10 km | Year | 2014–2020 | https://weijing-rs.github.io/product.html, accessed on 11 February 2024 |
NO2 | 10 km | Year | 2014–2020 | https://weijing-rs.github.io/product.html, accessed on 11 February 2024 |
O3 | 10 km | Year | 2014–2020 | https://weijing-rs.github.io/product.html, accessed on 11 February 2024 |
Factors | VIF |
---|---|
CO | 1.416183 |
LST | 2.419883 |
NO2 | 3.076362 |
O3 | 1.932922 |
PRE | 1.646616 |
GTWR | GWR | |||||||
---|---|---|---|---|---|---|---|---|
Year | 2014–2020 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
Bandwidth (°) | 0.114996 | 0.121176 | 0.124996 | 0.16544 | 0.237059 | 0.124996 | 0.124996 | 0.314818 |
ResidualSquares | 84,427,900 | 7,762,450 | 8,123,490 | 9,794,280 | 15,555,900 | 8,693,000 | 9,987,170 | 14,828,000 |
AICc | 13,191.3 | 1926.78 | 1930.96 | 1904.79 | 1935.11 | 1938.39 | 1953.52 | 1914.67 |
R2 | 0.602178 | 0.727502 | 0.731239 | 0.655626 | 0.526772 | 0.674349 | 0.724807 | 0.397604 |
R2 Adjusted | 0.599978 | 0.716514 | 0.720401 | 0.64174 | 0.507691 | 0.661218 | 0.713711 | 0.373314 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Yu, S.; Shen, S.; Wan, Y.; Song, C. Spatial and Temporal Variation of GPP and Its Response to Urban Environmental Changes in Beijing. ISPRS Int. J. Geo-Inf. 2024, 13, 396. https://doi.org/10.3390/ijgi13110396
Chen L, Yu S, Shen S, Wan Y, Song C. Spatial and Temporal Variation of GPP and Its Response to Urban Environmental Changes in Beijing. ISPRS International Journal of Geo-Information. 2024; 13(11):396. https://doi.org/10.3390/ijgi13110396
Chicago/Turabian StyleChen, Le, Simin Yu, Shi Shen, You Wan, and Changqing Song. 2024. "Spatial and Temporal Variation of GPP and Its Response to Urban Environmental Changes in Beijing" ISPRS International Journal of Geo-Information 13, no. 11: 396. https://doi.org/10.3390/ijgi13110396
APA StyleChen, L., Yu, S., Shen, S., Wan, Y., & Song, C. (2024). Spatial and Temporal Variation of GPP and Its Response to Urban Environmental Changes in Beijing. ISPRS International Journal of Geo-Information, 13(11), 396. https://doi.org/10.3390/ijgi13110396