TravelRAG: A Tourist Attraction Retrieval Framework Based on Multi-Layer Knowledge Graph
Abstract
:1. Introduction
- We developed an automated pipeline for constructing knowledge graphs based on large language models.
- Adapting to current advancements, we converted a substantial amount of the unstructured text into the multi-layer knowledge graph, utilizing the knowledge graph as the retrieval source in RAG.
- The RAG pipeline, which uses a knowledge graph as its retrieval source, demonstrated a superior retrieval accuracy compared to traditional RAG methods.
2. Related Works
2.1. Knowledge Graph
2.2. Retrieval Augmentation Generation
3. Methods
3.1. Travel Graph Construction
3.1.1. Document Chunking
3.1.2. Entity Extraction
3.1.3. Entity Linking
3.1.4. Relationship Linking
3.1.5. Community Construction and Summary Reports
3.2. Greedy Matching Retrieval Method
4. Experiment and Results
4.1. Experimental Data
4.1.1. RAG Data
4.1.2. Test Data
- Simple—This type of question answering indicates that the LLM can directly extract the answer from the context.
- MultiContent—This type of question answering indicates that the LLM needs to examine multiple documents to synthesize an answer.
- Reasoning—This type of question answering indicates that after receiving the query, the LLM must perform some reasoning based on the source text to provide an answer.
- Conditional—This type of question answering indicates that the LLM may need to respond under specific constraints.
4.2. Environments
4.3. Models
4.4. Evaluation Metrics
4.5. Baseline
4.6. Results
4.6.1. Travel Knowledge Graph
4.6.2. Metric Comparison
4.6.3. Ablation Study
4.6.4. Case Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, H.; Tuo, S.; Lei, K.; Gao, A. Assessing quality tourism development in China: An analysis based on the degree of mismatch and its influencing factors. Environ. Dev. Sustain. 2024, 26, 9525–9552. [Google Scholar] [CrossRef]
- Gao, J.; Chou, P.; Yu, L.; Huang, C.; Lu, F. Explainable Tourist Attraction Recommendation Based on a Tourism Knowledge Graph. Sci. China Inf. Sci. 2020, 50, 1055–1068. [Google Scholar]
- Lai, J.; Lansley, G.; Haworth, J.; Cheng, T. A name-led approach to profile urban places based on geotagged Twitter data. Trans. GIS 2020, 24, 858–879. [Google Scholar] [CrossRef]
- Zhou, Q.; Sotiriadis, M.; Shen, S. Using TikTok in tourism destination choice: A young Chinese tourists’ perspective. Tour. Manag. Perspect. 2023, 46, 101101. [Google Scholar] [CrossRef]
- Yhee, Y.; Goo, J.; Koo, C.; Chung, N. Meme-affordance tourism: The power of imitation and self-presentation. Decis. Support Syst. 2024, 179, 114177. [Google Scholar] [CrossRef]
- Guo, W.; Zhou, S.; Zhang, M.; Zhang, X.; Ai, S.; Xie, S.; Li, Y.; Chen, X.; Zhang, X.; Yu, Z.; et al. The Digital Practice of Internet-Famous Sites and the Production of New Spatial Forms; Tongfang Knowledge Network (Beijing) Technology Co., Ltd.: Beijing, China, 2024; pp. 1–22. [Google Scholar] [CrossRef]
- Zannettou, S.; Caulfield, T.; Blackburn, J.; Cristofaro, E.D.; Sirivianos, M.; Stringhini, G.; Suarez-Tangil, G. On the Origins of Memes by Means of Fringe Web Communities. arXiv 2018, arXiv:1805.12512. [Google Scholar]
- Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language Models are Few-Shot Learners. arXiv 2020, arXiv:2005.14165. [Google Scholar]
- Dhingra, B.; Cole, J.R.; Eisenschlos, J.M.; Gillick, D.; Eisenstein, J.; Cohen, W.W. Time-aware language models as temporal knowledge bases. Trans. Assoc. Comput. Linguist. 2022, 10, 257–273. [Google Scholar] [CrossRef]
- Perković, G.; Drobnjak, A.; Botički, I. Hallucinations in llms: Understanding and addressing challenges. In Proceedings of the 2024 47th MIPRO ICT and Electronics Convention (MIPRO), Opatija, Croatia, 20–24 May 2024; pp. 2084–2088. [Google Scholar]
- Hu, E.J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.; Wang, L.; Chen, W. LoRA: Low-Rank Adaptation of Large Language Models. arXiv 2021, arXiv:2106.09685. [Google Scholar]
- Chen, Y.; Qian, S.; Tang, H.; Lai, X.; Liu, Z.; Han, S.; Jia, J. LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models. arXiv 2024, arXiv:2309.12307. [Google Scholar]
- Huang, P.S.; He, X.; Gao, J.; Deng, L.; Acero, A.; Heck, L. Learning deep structured semantic models for web search using clickthrough data. In Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, San Francisco, CA, USA, 27 October–1 November 2013; pp. 2333–2338. [Google Scholar]
- Lewis, P.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.; Goyal, N.; Küttler, H.; Lewis, M.; tau Yih, W.; Rocktäschel, T.; et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. arXiv 2021, arXiv:2005.11401. [Google Scholar]
- Hu, Y.; Lei, Z.; Zhang, Z.; Pan, B.; Ling, C.; Zhao, L. GRAG: Graph Retrieval-Augmented Generation. arXiv 2024, arXiv:2405.16506. [Google Scholar]
- Giarelis, N.; Mastrokostas, C.; Karacapilidis, N. A Unified LLM-KG Framework to Assist Fact-Checking in Public Deliberation. In Proceedings of the First Workshop on Language-Driven Deliberation Technology (DELITE)@ LREC-COLING 2024, Torino, Italy, 20–25 May 2024; pp. 13–19. [Google Scholar]
- Logan IV, R.L.; Liu, N.F.; Peters, M.E.; Gardner, M.; Singh, S. Barack’s wife Hillary: Using knowledge-graphs for fact-aware language modeling. arXiv 2019, arXiv:1906.07241. [Google Scholar]
- Luo, L.; Li, Y.F.; Haffari, G.; Pan, S. Reasoning on graphs: Faithful and interpretable large language model reasoning. arXiv 2023, arXiv:2310.01061. [Google Scholar]
- Suchanek, F.M.; Kasneci, G.; Weikum, G. Yago: A core of semantic knowledge. In Proceedings of the 16th International Conference on World Wide Web, Banff, AB, Canada, 8–12 May 2007; pp. 697–706. [Google Scholar]
- Carlson, A.; Betteridge, J.; Kisiel, B.; Settles, B.; Hruschka, E.R.; Mitchell, T.M. Toward an architecture for never-ending language learning. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, Atlanta, GA, USA, 11–15 July 2010; pp. 1306–1313. [Google Scholar]
- Hogan, A.; Blomqvist, E.; Cochez, M.; d’Amato, C.; Melo, G.D.; Gutierrez, C.; Kirrane, S.; Gayo, J.E.L.; Navigli, R.; Neumaier, S.; et al. Knowledge graphs. Acm Comput. Surv. (CSUR) 2021, 54, 1–37. [Google Scholar] [CrossRef]
- Fellbaum, C. WordNet: An Electronic Lexical Database; MIT Press: Cambridge, MA, USA, 1998; Volume 2, pp. 678–686. [Google Scholar]
- Bin, Y.; Xiao-Ran, L.; Ning, L.; Yue-Song, Y. Using information content to evaluate semantic similarity on HowNet. In Proceedings of the 2012 Eighth International Conference on Computational Intelligence and Security, Guangzhou, China, 17–18 November 2012; pp. 142–145. [Google Scholar]
- Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas, D.; Mendes, P.N.; Hellmann, S.; Morsey, M.; Van Kleef, P.; Auer, S.; et al. Dbpedia–A large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web 2015, 6, 167–195. [Google Scholar] [CrossRef]
- Xiong, C.; Power, R.; Callan, J. Explicit semantic ranking for academic search via knowledge graph embedding. In Proceedings of the 26th International Conference on World Wide Web, Perth, WA, Australia, 3–7 April 2017; pp. 1271–1279. [Google Scholar]
- Zhu, G.; Iglesias, C.A. Sematch: Semantic similarity framework for knowledge graphs. Knowl.-Based Syst. 2017, 130, 30–32. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, H.; Kozareva, Z.; Smola, A.; Song, L. Variational reasoning for question answering with knowledge graph. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Wang, X.; He, X.; Cao, Y.; Liu, M.; Chua, T.S. Kgat: Knowledge graph attention network for recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 950–958. [Google Scholar]
- Wang, X.; Huang, T.; Wang, D.; Yuan, Y.; Liu, Z.; He, X.; Chua, T.S. Learning intents behind interactions with knowledge graph for recommendation. In Proceedings of the WWW ’21: The Web Conference, Ljubljana, Slovenia, 19–23 April 2021; pp. 878–887. [Google Scholar]
- Dong, Q.; Li, L.; Dai, D.; Zheng, C.; Ma, J.; Li, R.; Xia, H.; Xu, J.; Wu, Z.; Liu, T.; et al. A survey on in-context learning. arXiv 2022, arXiv:2301.00234. [Google Scholar]
- Hu, Y.; Zou, F.; Han, J.; Sun, X.; Wang, Y. Llm-tikg: Threat intelligence knowledge graph construction utilizing large language model. Comput. Secur. 2024, 145, 103999. [Google Scholar] [CrossRef]
- Wei, Y.; Huang, Q.; Kwok, J.T.; Zhang, Y. Kicgpt: Large language model with knowledge in context for knowledge graph completion. arXiv 2024, arXiv:2402.02389. [Google Scholar]
- Zhang, Y.; Du, T.; Ma, Y.; Wang, X.; Xie, Y.; Yang, G.; Lu, Y.; Chang, E.C. AttacKG+: Boosting Attack Knowledge Graph Construction with Large Language Models. arXiv 2024, arXiv:2405.04753. [Google Scholar]
- Agrawal, G.; Kumarage, T.; Alghamdi, Z.; Liu, H. Can Knowledge Graphs Reduce Hallucinations in LLMs: A Survey. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Mexico City, Mexico, 16–21 June 2024; Duh, K., Gomez, H., Bethard, S., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2024; Volume 1, pp. 3947–3960. [Google Scholar] [CrossRef]
- Petroni, F.; Rocktäschel, T.; Riedel, S.; Lewis, P.; Bakhtin, A.; Wu, Y.; Miller, A. Language Models as Knowledge Bases? In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; Inui, K., Jiang, J., Ng, V., Wan, X., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 2463–2473. [Google Scholar] [CrossRef]
- Dai, D.; Dong, L.; Hao, Y.; Sui, Z.; Chang, B.; Wei, F. Knowledge Neurons in Pretrained Transformers. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, 22–27 May 2022; Muresan, S., Nakov, P., Villavicencio, A., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2022; Volume 1, pp. 8493–8502. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need. In Proceedings of the Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Choudhary, N.; Reddy, C.K. Complex Logical Reasoning over Knowledge Graphs using Large Language Models. arXiv 2024, arXiv:2305.01157. [Google Scholar] [CrossRef]
- Wang, S.; Wei, Z.; Xu, J.; Li, T.; Fan, Z. Unifying Structure Reasoning and Language Pre-Training for Complex Reasoning Tasks. IEEE/ACM Trans. Audio Speech Lang. Proc. 2023, 32, 1586–1595. [Google Scholar] [CrossRef]
- Tao, W.; Zhou, Q.; Zhao, Y.; Yu, A. A Cross-Field Construction Method of Chinese Tourism Knowledge Graph based on Expasion and Adjustment of Entities. In Proceedings of the 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 12–14 June 2020; pp. 211–215. [Google Scholar]
- Calleja, P.; Priyatna, F.; Mihindukulasooriya, N.; Rico, M. DBtravel: A tourism-oriented semantic graph. In Proceedings of the Current Trends in Web Engineering: ICWE 2018 International Workshops, MATWEP, EnWot, KD-WEB, WEOD, TourismKG, Cáceres, Spain, 5 June 2018; pp. 206–212. [Google Scholar]
- Zhang, W.; Cao, H.; Hao, F.; Yang, L.; Ahmad, M.; Li, Y. The chinese knowledge graph on domain-tourism. In Advanced Multimedia and Ubiquitous Engineering: MUE/FutureTech; Springer: Singapore, 2019; pp. 20–27. [Google Scholar]
- Xiao, D.; Wang, N.; Yu, J.; Zhang, C.; Wu, J. A practice of tourism knowledge graph construction based on heterogeneous information. In Proceedings of the Chinese Computational Linguistics: 19th China National Conference, CCL 2020, Hainan, China, 30 October–1 November 2020; pp. 159–173. [Google Scholar]
- Liu, W.; Liu, J.; Wu, M.; Abbas, S.; Hu, W.; Wei, B.; Zheng, Q. Representation learning over multiple knowledge graphs for knowledge graphs alignment. Neurocomputing 2018, 320, 12–24. [Google Scholar] [CrossRef]
- Tan, J.; Qiu, Q.; Guo, W.; Li, T. Research on the construction of a knowledge graph and knowledge reasoning model in the field of urban traffic. Sustainability 2021, 13, 3191. [Google Scholar] [CrossRef]
- Luan, Y.; Eisenstein, J.; Toutanova, K.; Collins, M. Sparse, dense, and attentional representations for text retrieval. Trans. Assoc. Comput. Linguist. 2021, 9, 329–345. [Google Scholar] [CrossRef]
- Robertson, S.; Zaragoza, H. The probabilistic relevance framework: BM25 and beyond. Found. Trends Inf. Retr. 2009, 3, 333–389. [Google Scholar] [CrossRef]
- Zhao, W.X.; Liu, J.; Ren, R.; Wen, J.R. Dense text retrieval based on pretrained language models: A survey. ACM Trans. Inf. Syst. 2024, 42, 1–60. [Google Scholar] [CrossRef]
- Guo, J.; Fan, Y.; Ai, Q.; Croft, W.B. A deep relevance matching model for ad-hoc retrieval. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, Indianapolis, IN, USA, 24–28 October 2016; pp. 55–64. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Burstein, J., Doran, C., Solorio, T., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; Volume 1, pp. 4171–4186. [Google Scholar] [CrossRef]
- Fan, Y.; Xie, X.; Cai, Y.; Chen, J.; Ma, X.; Li, X.; Zhang, R.; Guo, J. Pre-training methods in information retrieval. Found. Trends Inf. Retr. 2022, 16, 178–317. [Google Scholar] [CrossRef]
- Karpukhin, V.; Oguz, B.; Min, S.; Lewis, P.; Wu, L.; Edunov, S.; Chen, D.; Yih, W.t. Dense Passage Retrieval for Open-Domain Question Answering. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 16–20 November 2020; Webber, B., Cohn, T., He, Y., Liu, Y., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 6769–6781. [Google Scholar] [CrossRef]
- Khattab, O.; Zaharia, M. Colbert: Efficient and effective passage search via contextualized late interaction over bert. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, China, 25–30 June 2020; pp. 39–48. [Google Scholar]
- Santhanam, K.; Khattab, O.; Saad-Falcon, J.; Potts, C.; Zaharia, M. Colbertv2: Effective and efficient retrieval via lightweight late interaction. arXiv 2021, arXiv:2112.01488. [Google Scholar]
- Metzler, D.; Tay, Y.; Bahri, D.; Najork, M. Rethinking search: Making domain experts out of dilettantes. In ACM SIGIR Forum; ACM: New York, NY, USA, 2021; Volume 55, pp. 1–27. [Google Scholar]
- De Cao, N.; Izacard, G.; Riedel, S.; Petroni, F. Autoregressive entity retrieval. arXiv 2020, arXiv:2010.00904. [Google Scholar]
- Sun, W.; Yan, L.; Chen, Z.; Wang, S.; Zhu, H.; Ren, P.; Chen, Z.; Yin, D.; Rijke, M.; Ren, Z. Learning to Tokenize for Generative Retrieval. In Proceedings of the 37th Annual Conference on Neural Information Processing Systems (NeurIPS 2023), New Orleans, LA, USA, 10–16 December 2023; Volume 36, pp. 46345–46361. [Google Scholar]
- Bevilacqua, M.; Ottaviano, G.; Lewis, P.; Yih, S.; Riedel, S.; Petroni, F. Autoregressive search engines: Generating substrings as document identifiers. Adv. Neural Inf. Process. Syst. 2022, 35, 31668–31683. [Google Scholar]
- Chen, J.; Zhang, R.; Guo, J.; de Rijke, M.; Chen, W.; Fan, Y.; Cheng, X. Continual learning for generative retrieval over dynamic corpora. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, Birmingham, UK, 21–25 October 2023; pp. 306–315. [Google Scholar]
- Gao, Y.; Xiong, Y.; Gao, X.; Jia, K.; Pan, J.; Bi, Y.; Dai, Y.; Sun, J.; Wang, M.; Wang, H. Retrieval-augmented generation for large language models: A survey. arXiv 2023, arXiv:2312.10997. [Google Scholar]
- Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; Jurafsky, D., Chai, J., Schluter, N., Tetreault, J., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 7871–7880. [Google Scholar] [CrossRef]
- Yu, W.; Iter, D.; Wang, S.; Xu, Y.; Ju, M.; Sanyal, S.; Zhu, C.; Zeng, M.; Jiang, M. Generate rather than Retrieve: Large Language Models are Strong Context Generators. arXiv 2023, arXiv:2209.10063. [Google Scholar] [CrossRef]
- Khattab, O.; Santhanam, K.; Li, X.L.; Hall, D.; Liang, P.; Potts, C.; Zaharia, M. Demonstrate-Search-Predict: Composing Retrieval and Language Models for Knowledge-Intensive NLP. arXiv 2023, arXiv:2212.14024. [Google Scholar] [CrossRef]
- Luo, M.; Jain, S.; Gupta, A.; Einolghozati, A.; Oguz, B.; Chatterjee, D.; Chen, X.; Baral, C.; Heidari, P. A study on the efficiency and generalization of light hybrid retrievers. arXiv 2022, arXiv:2210.01371. [Google Scholar]
- Gao, L.; Ma, X.; Lin, J.; Callan, J. Precise zero-shot dense retrieval without relevance labels. arXiv 2022, arXiv:2212.10496. [Google Scholar]
- Sanmartin, D. KG-RAG: Bridging the Gap Between Knowledge and Creativity. arXiv 2024, arXiv:2405.12035. [Google Scholar]
- Li, H.; Gao, H.; Song, H. Tourism forecasting with granular sentiment analysis. Ann. Tour. Res. 2023, 103, 103667. [Google Scholar] [CrossRef]
- Yao, L.; Sheng, Q.Z.; Ngu, A.H.; Yu, J.; Segev, A. Unified collaborative and content-based web service recommendation. IEEE Trans. Serv. Comput. 2014, 8, 453–466. [Google Scholar] [CrossRef]
- Zhang, Z.; Guan, Z.; Zhang, F.; Zhuang, F.; An, Z.; Wang, F.; Xu, Y. Weighted knowledge graph embedding. In Proceedings of the 46th international ACM SIGIR Conference on Research and Development in Information Retrieval, Taipei, Taiwan, 23–27 July 2023; pp. 867–877. [Google Scholar]
- Zhang, P.; Zhang, X.; Yang, F.; Liao, J.; Ma, W.; Tan, Z.; Xiao, W. Knowledge Graph Embedding for Hierarchical Entities Based on Auto-Embedding Size. Mathematics 2024, 12, 3237. [Google Scholar] [CrossRef]
- Lv, X.; Hou, L.; Li, J.; Liu, Z. Differentiating concepts and instances for knowledge graph embedding. arXiv 2018, arXiv:1811.04588. [Google Scholar]
- Hao, J.; Chen, M.; Yu, W.; Sun, Y.; Wang, W. Universal representation learning of knowledge bases by jointly embedding instances and ontological concepts. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1709–1719. [Google Scholar]
- Li, M.; Ni, Z.; Tian, L.; Hu, Y.; Shen, J.; Wang, Y. Research on hierarchical knowledge graphs of data, information, and knowledge based on multiple data sources. Appl. Sci. 2023, 13, 4783. [Google Scholar] [CrossRef]
- Traag, V.A.; Waltman, L.; van Eck, N.J. From Louvain to Leiden: Guaranteeing well-connected communities. Sci. Rep. 2019, 9, 5233. [Google Scholar] [CrossRef]
- Lin, Y.S.; Huang, J.Y. Internet blogs as a tourism marketing medium: A case study. J. Bus. Res. 2006, 59, 1201–1205. [Google Scholar] [CrossRef]
- Neirotti, P.; Raguseo, E.; Paolucci, E. Are customers’ reviews creating value in the hospitality industry? Exploring the moderating effects of market positioning. Int. J. Inf. Manag. 2016, 36, 1133–1143. [Google Scholar] [CrossRef]
- Ye, Q.; Law, R.; Gu, B.; Chen, W. The influence of user-generated content on traveler behavior: An empirical investigation on the effects of e-word-of-mouth to hotel online bookings. Comput. Hum. Behav. 2011, 27, 634–639. [Google Scholar] [CrossRef]
- Li, Q.; Li, S.; Zhang, S.; Hu, J.; Hu, J. A review of text corpus-based tourism big data mining. Appl. Sci. 2019, 9, 3300. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, Y.X.; Hu, A.Y. Utilizing textual data from online reviews for daily tourism demand forecasting: A deep learning approach leveraging word embedding techniques. Expert Syst. Appl. 2025, 260, 125439. [Google Scholar] [CrossRef]
- Yang, A.; Yang, B.; Hui, B.; Zheng, B.; Yu, B.; Zhou, C.; Li, C.; Li, C.; Liu, D.; Huang, F.; et al. Qwen2 Technical Report. arXiv 2024, arXiv:2407.10671. [Google Scholar]
- OpenAI; Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; et al. GPT-4 Technical Report. arXiv 2024, arXiv:2303.08774. [Google Scholar]
- Chen, J.; Xiao, S.; Zhang, P.; Luo, K.; Lian, D.; Liu, Z. BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation. arXiv 2024, arXiv:2402.03216. [Google Scholar]
- Es, S.; James, J.; Espinosa-Anke, L.; Schockaert, S. Ragas: Automated evaluation of retrieval augmented generation. arXiv 2023, arXiv:2309.15217. [Google Scholar]
- Ma, X.; Gong, Y.; He, P.; Zhao, H.; Duan, N. Query rewriting for retrieval-augmented large language models. arXiv 2023, arXiv:2305.14283. [Google Scholar]
- Mohammed, L. GPT-4 Parameters: Unlimited Guide NLP’s Game-Changer. Medium, 29 March 2022. [Google Scholar]
Content Structure | Number of Articles | Total Word Count |
---|---|---|
Title–author–time–content | 100 | 80,983 |
Type | Simple | MultiContent | Reasoning | Conditional |
---|---|---|---|---|
Number | 50 | 20 | 20 | 10 |
Hardware and Software | Configuration | Detailed Information |
---|---|---|
Hardware | CPU | Intel Core i9-12900KF |
Memory | 64 GB | |
Graphics Card | NVIDIA GeForce RTX 3090 Ti 24 GB | |
Software | System | Ubuntu 20.04.6 LTS CUDA 11.8 |
Software | Python 3.10.13 PyTorch 2.1.2 |
Type | Numbers |
---|---|
Entities | 2081 |
Relations | 20 |
Relational Triples | 1187 |
Method | Size | Faithfulness | Answer Relevancy | Context Precision | Context Recall |
---|---|---|---|---|---|
Qwen2-RAG | 72 B | 0.55 | 0.59 | 0.70 | 0.79 |
GPT-4-RAG | 180 B | 0.65 | 0.67 | 0.80 | 0.87 |
TravelRAG | base on GPT-4 | 0.76 | 0.87 | 0.85 | 0.60 |
Method | Size | Faithfulness | Answer Relevancy | Context Precision | Context Recall |
---|---|---|---|---|---|
Qwen2-TravelRAG | 7 B | 0.32 | 0.21 | 0.32 | 0.15 |
Qwen2-TravelRAG | 57 B | 0.57 | 0.43 | 0.63 | 0.38 |
Qwen2-TravelRAG | 72 B | 0.69 | 0.78 | 0.75 | 0.71 |
GPT-4-TravelRag | 180 B+ 1 | 0.76 | 0.87 | 0.85 | 0.60 |
Method | Size | Simple | MultiContent | Reasoning | Conditional |
---|---|---|---|---|---|
Qwen2-TravelRAG | 72 B | 0.89 | 0.57 | 0.65 | 0.54 |
GPT-4-TravelRag | 180 B | 0.88 | 0.43 | 0.72 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Yang, C.; Xu, L.; Shang, H.; Li, Z.; Chang, Y. TravelRAG: A Tourist Attraction Retrieval Framework Based on Multi-Layer Knowledge Graph. ISPRS Int. J. Geo-Inf. 2024, 13, 414. https://doi.org/10.3390/ijgi13110414
Song S, Yang C, Xu L, Shang H, Li Z, Chang Y. TravelRAG: A Tourist Attraction Retrieval Framework Based on Multi-Layer Knowledge Graph. ISPRS International Journal of Geo-Information. 2024; 13(11):414. https://doi.org/10.3390/ijgi13110414
Chicago/Turabian StyleSong, Sihan, Chuncheng Yang, Li Xu, Haibin Shang, Zhuo Li, and Yinghui Chang. 2024. "TravelRAG: A Tourist Attraction Retrieval Framework Based on Multi-Layer Knowledge Graph" ISPRS International Journal of Geo-Information 13, no. 11: 414. https://doi.org/10.3390/ijgi13110414
APA StyleSong, S., Yang, C., Xu, L., Shang, H., Li, Z., & Chang, Y. (2024). TravelRAG: A Tourist Attraction Retrieval Framework Based on Multi-Layer Knowledge Graph. ISPRS International Journal of Geo-Information, 13(11), 414. https://doi.org/10.3390/ijgi13110414