A Geographic Information System-Based Model and Analytic Hierarchy Process for Wind Farm Site Selection in the Red Sea
Abstract
:1. Introduction
- This is the first study to investigate suitable locations for floating turbines in the Red Sea in Saudi Arabia.
- We utilized a GIS-based MCDM model using the AHP technique [13] to weigh all the required criteria for such projects.
- We provide a list of suitable locations for wind farms, along with their coordinates, total areas and projected energy production.
2. Related Works
3. Materials and Methods
- Defining the constraints and evaluation criteria used for site suitability.
- Collecting data related to the criteria.
- Conducting spatial analysis using several techniques such as geometric and distance operations.
- Designing the Spatial Decision Support system (SDSS) using GIS-AHP.
- Providing and discussing the results, which outline the most promising potential wind energy generation sites in the Red Sea.
3.1. Study Area
3.2. Defining Criteria
3.3. Data Collection
3.4. Spatial Analysis
3.4.1. Creating the Constraints Map
3.4.2. Creating the Criteria Weighted Map
3.5. Spatial Decision Support
3.6. Wind Suitability Map
4. Results and Discussion
4.1. Wind Farm Location Suitability Map for the Red Sea
4.2. Model Validation
- The Root Mean Square Error (RMSE) was used to quantify the magnitude of deviations;
- The Coefficient of Determination (R2) was used to assess the correlation between GWA estimates and field measurements.
4.3. Energy Production
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crabtree, G.W.; Lewis, N.S. Solar energy conversion. Phys. Today 2007, 60, 37–42. [Google Scholar] [CrossRef]
- Bruggink, J.J.C.; van Zwaan, B. der The role of nuclear energy in establishing sustainable energy paths. Int. J. Glob. Energy Issues 2002, 18, 151–180. [Google Scholar] [CrossRef]
- Dellosa, J.T. Potential Effect and Analysis of High Residential Solar Photovoltaic (PV) Systems Penetration to an Electric Distribution Utility (DU). Int. J. Renew. Energy Dev. 2016, 5, 179–185. [Google Scholar] [CrossRef]
- Homepage: The Progress & Achievements of Saudi Arabia—Vision 2030. Available online: https://www.vision2030.gov.sa/ (accessed on 17 July 2022).
- Albraheem, L.; Alabdulkarim, L. Geospatial Analysis of Solar Energy in Riyadh Using a GIS-AHP-Based Technique. ISPRS Int. J. Geo-Inf. 2021, 10, 291. [Google Scholar] [CrossRef]
- Baseer, M.A.; Rehman, S.; Meyer, J.P.; Alam, M.M. GIS-based site suitability analysis for wind farm development in Saudi Arabia. Energy 2017, 141, 1166–1176. [Google Scholar] [CrossRef]
- Albraheem, L.; AlAwlaqi, L. Geospatial analysis of wind energy plant in Saudi Arabia using a GIS-AHP technique. Energy Rep. 2023, 9, 5878–5898. [Google Scholar] [CrossRef]
- Rehman, S.; Baseer, M.A.; Alhems, L.M. GIS-Based Multi-Criteria Wind Farm Site Selection Methodology. FME Trans. 2020, 48, 855–867. [Google Scholar] [CrossRef]
- Rehman, S.; Mohammed, A.B.; Alhems, L. A heuristic approach to siting and design optimization of an onshore wind farm layout. Energies 2020, 13, 5946. [Google Scholar] [CrossRef]
- About Kingdom | General Authority for Statistics. Available online: https://www.stats.gov.sa/en/%D8%B5%D9%81%D8%AD%D8%A9/about-kingdom (accessed on 17 July 2022).
- Salah, M.M.; Abo-khalil, A.G.; Praveen, R.P. Wind speed characteristics and energy potential for selected sites in Saudi Arabia. J. King Saud Univ.—Eng. Sci. 2021, 33, 119–128. [Google Scholar] [CrossRef]
- Spyridonidou, S.; Vagiona, D.G. Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research. Energies 2020, 13, 5906. [Google Scholar] [CrossRef]
- Kulakowski, K. Understanding the Analytic Hierarchy Process; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Mahdy, M.; Bahaj, A.S. Multi criteria decision analysis for offshore wind energy potential in Egypt. Renew. Energy 2018, 118, 278–289. [Google Scholar] [CrossRef]
- Schwartz, M.; Heimiller, D.; Haymes, S.; Musial, W. Assessment of Offshore Wind Energy Resources for the United States; Report Number NREL/TP-500-45889; OSTI ID: 983415; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2010. [Google Scholar] [CrossRef]
- Elgabiri, M.; Palmer, D.; Buflasa, H.A.; Thomson, M. Offshore wind energy potential for Bahrain via multi-criteria evaluation. Wind Eng. 2021, 45, 838–856. [Google Scholar] [CrossRef]
- Díaz, H.; Guedes Soares, C. An integrated GIS approach for site selection of floating offshore wind farms in the Atlantic continental European coastline. Renew. Sustain. Energy Rev. 2020, 134, 110328. [Google Scholar] [CrossRef]
- Taoufik, M.; Fekri, A. GIS-based multi-criteria analysis of offshore wind farm development in Morocco. Energy Convers. Manag. X 2021, 11, 100103. [Google Scholar] [CrossRef]
- Deveci, M.; Özcan, E.; John, R. Offshore Wind Farms: A Fuzzy Approach to Site Selection in a Black Sea Region. In Proceedings of the 2020 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 6–7 February 2020; p. 9042530. [Google Scholar] [CrossRef]
- Wang, C.N.; Nguyen, N.A.T.; Dang, T.T. Offshore wind power station (OWPS) site selection using a two-stage MCDM-based spherical fuzzy set approach. Sci. Rep. 2022, 12, 4260. [Google Scholar] [CrossRef]
- Almansi, K.Y.; Shariff, A.R.M.; Kalantar, B.; Abdullah, A.F.; Ismail, S.N.S.; Ueda, N. Performance Evaluation of Hospital Site Suitability Using Multilayer Perceptron (MLP) and Analytical Hierarchy Process (AHP) Models in Malacca, Malaysia. Sustainability 2022, 14, 3731. [Google Scholar] [CrossRef]
- Gacu, J.G.; Garcia, J.D.; Fetalvero, E.G.; Catajay-Mani, M.P.; Monjardin, C.E.F. Suitability Analysis Using GIS-Based Analytic Hierarchy Process (AHP) for Solar Power Exploration. Energies 2023, 16, 6724. [Google Scholar] [CrossRef]
- Mhana, K.H.; Awad, H.A. An ideal location selection of electric vehicle charging stations: Employment of integrated analytical hierarchy process with geographical information system. Sustain. Cities Soc. 2024, 107, 105456. [Google Scholar] [CrossRef]
- Mahmood, K.W. GIS-AHP for selecting the best locations for residential lands—Case study: Erbil City, Iraq. GeoJournal 2023, 88, 6073–6090. [Google Scholar] [CrossRef]
- Mahdy, M.; Bahaj, A.; Alghamdi, A. Offshore Wind Energy Potential Around the East Coast of the Red Sea, KSA. In Proceedings of the IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry, Abu Dhabi, United Arab Emirates, 29 October–2 November 2017; pp. 1–11. [Google Scholar] [CrossRef]
- Rasul, N.M.A.; Stewart, I.C.F. (Eds.) The Red Sea: The Formation, Morphology, Oceanography and Environment of a Young Ocean Basin; Springer Earth System Sciences; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Bailey, B.H.; McDonald, S.L.; Bernadett, D.W.; Markus, M.J.; Elsholz, K.V. Wind Resource Assessment Handbook: Fundamentals for Conducting a Successful Monitoring Program; NREL/SR-440-22223; ON: DE97000250; National Renewable Energy Lab. (NREL): Golden, CO, USA; AWS Scientific, Inc.: Albany, NY, USA, 1997. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory (NREL) Home Page. Available online: https://www.nrel.gov/ (accessed on 1 January 2024).
- Gil-García, I.C.; García-Cascales, M.S.; Fernández-Guillamón, A.; Molina-García, A. Categorization and Analysis of Relevant Factors for Optimal Locations in Onshore and Offshore Wind Power Plants: A Taxonomic Review. J. Mar. Sci. Eng. 2019, 7, 391. [Google Scholar] [CrossRef]
- Global Wind Atlas. Available online: https://globalwindatlas.info/en (accessed on 23 October 2022).
- Saudi Arabia: Subdivisions—Vector Data, Maps, Elevation, Satellite Imagery and Ready-to-Go GIS Projects in ESRI Shape, GeoPackage, Geodatabase, GeoJSON, PDF, CSV, TAB, PBF, XML, SQL and GeoTIFF Formats for QGIS, ArcGIS, Mapinfo, Excel, PostgreSQL, PostGIS. Available online: https://data.nextgis.com/en/catalog/subdivisions?country=SA (accessed on 23 October 2022).
- Oceans, G.B.C. of the Gridded Bathymetry Data (General Bathymetric Chart of the Oceans). Available online: https://www.gebco.net/data_and_products/gridded_bathymetry_data/ (accessed on 17 March 2024).
- ArcGIS Living Atlas of the World. Available online: https://livingatlas.arcgis.com/en/home/ (accessed on 17 March 2024).
- Home’ Protected Planet. Available online: https://livingatlas.arcgis.com/en/home/ (accessed on 1 January 2024).
- Sánchez-Lozano, J.M.; García-Cascales, M.S.; Lamata, M.T. GIS-based onshore wind farm site selection using Fuzzy Multi-Criteria Decision Making methods. Evaluating the case of Southeastern Spain. Appl. Energy 2016, 171, 86–102. [Google Scholar] [CrossRef]
- Ayodele, T.R.; Ogunjuyigbe, A.S.O.; Odigie, O.; Munda, J.L. A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria. Appl. Energy 2018, 228, 1853–1869. [Google Scholar] [CrossRef]
- Ayodele, T.R.; Jimoh, A.A.; Munda, J.L.; Agee, J.T. Wind distribution and capacity factor estimation for wind turbines in the coastal region of South Africa. Energy Convers. Manag. 2012, 64, 614–625. [Google Scholar] [CrossRef]
- Schwartz, M. Wind Resource Estimation and Mapping at the National Renewable Energy Laboratory. In Proceedings of the ASES Solar ‘99 Conference, Portland, ME, USA, 12–16 June 1999. [Google Scholar]
- Ko, D.; Jeong, S.; Kang, K.-S. Assessment of Offshore Wind Power Potential in the Western Seas of Korea. J. Korean Soc. Coast. Ocean Eng. 2015, 27, 266–273. [Google Scholar] [CrossRef]
- Waewsak, J.; Chancham, C.; Landry, M.; Gagnon, Y. An Analysis of Wind Speed Distribution at Thasala, Nakhon Si Thammarat, Thailand. J. Sustain. Energy Environ. 2011, 2, 51–55. [Google Scholar]
- Díaz-Cuevas, P.; Domínguez-Bravo, J.; Prieto-Campos, A. Integrating MCDM and GIS for renewable energy spatial models: Assessing the individual and combined potential for wind, solar and biomass energy in Southern Spain. Clean Technol Environ. Policy 2019, 21, 1855–1869. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process-what it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Baffoe, P.E.; Sarpong, D. Selecting Suitable Sites for Wind Energy Development in Ghana. Ghana Min. J. 2016, 16, 8. [Google Scholar] [CrossRef]
- Moradi, S.; Yousefi, H.; Noorollahi, Y.; Rosso, D. Multi-criteria decision support system for wind farm site selection and sensitivity analysis: Case study of Alborz Province, Iran. Energy Strategy Rev. 2020, 29, 100478. [Google Scholar] [CrossRef]
- Deveci, M.; Cali, U.; Kucuksari, S.; Erdogan, N. Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland. Energy 2020, 198, 117317. [Google Scholar] [CrossRef]
- Sheridan, B.; Baker, S.D.; Pearre, N.S.; Firestone, J.; Kempton, W. Calculating the offshore wind power resource: Robust assessment methods applied to the U.S. Atlantic Coast. Renew. Energy 2012, 43, 224–233. [Google Scholar] [CrossRef]
Ref. | Study Area Location | Applied Method | Evaluation Criteria |
---|---|---|---|
[15] | USA | Not defined | Wind speed, water depth, and distance from shore. |
[14] | Egypt | AHP | Water power density, water depth, distance from shoreline, soil properties, and distance from the National Grid. |
[16] | Bahrain | AHP | Wind speed, water depth, and distance from coastlines. |
[17] | Atlantic continental European coastline | Not defined | Wind speed, wind potential, water depth, distance from power grid, distance from shore, wave condition, temperature, etc. |
[18] | Morocco | FAHP | Wind speed, water depth, distance from power grid, distance from shore, ports, etc. |
[19] | Black Sea region of Turkey | Intuitionistic fuzzy + TOPSIS | Wind speed, water depth, distance from ports, distance from shore, distance from restricted areas, cost, etc. |
[20] | Vietnam | SF-AHP WASPAS | Wind resources, environmental impact, construction and maintenance conditions, societal impact, conditions onshore, and economic impact were considered. |
[25] | Saudi Arabia | Boolean Mask model | Wind speed, water depth, distance from shore, distance from grid, shipping routes, cables, and restricted areas. |
Criteria | Objectives | |
---|---|---|
C1 | Annual average wind speed at 100 m height AGL | Maximize |
C2 | Wind power density | Maximize |
C3 | Distance from power lines | Minimize |
Exclusion Criteria | Unsuitable Areas |
---|---|
Water depth | Fixed turbine <5 or >60 m Floating turbine <60 or >1000 m |
Distance from shore | <1.5 or >100 km |
Shipping Lanes | All |
Underwater Cables | All |
Protected areas | All |
Data Layer | Type of Criterion | File Format | Source |
---|---|---|---|
Wind speed | Weighted | Raster | Global Wind Atlas [30] |
Wind power density | Weighted | Raster | Global Wind Atlas [30] |
Electricity power lines | Weighted | Vector | NextGIS [31] |
Shoreline | Constraint | Vector | NextGIS [31] |
Water depth | Constraint | Raster | GEBCO Gridded Bathymetry Data [32] Global Wind Atlas [30] |
Shipping routes | Constraint | Vector | ArcGIS [33] |
Protected areas | Constraint | Vector | Protected planet [34] |
Underwater cables | Constraint | Vector | ArcGIS [33] |
Category | Distance (m) to | Wind Speed (m/s) | Wind Power Density (%) | Score | Suitability |
---|---|---|---|---|---|
Power Lines | |||||
A | >200 | <4 | <200 | 0 | Not suitable |
B | 150–200 | 4–5 | 200–300 | 1 | Less suitable |
C | 100–150 | 5–6 | 300–400 | 2 | Suitable |
D | 50–100 | 6–7 | 400–500 | 3 | Very suitable |
E | 0–50 | >7 | >500 | 4 | Extremely suitable |
Intensity of Importance | Definition | Explanation |
---|---|---|
1 | Equally important | The objective is equally supported by two activities. |
3 | Moderate importance of one over another | One activity marginally outweighs another in favor of experience and judgment. |
5 | Essential importance | One activity is greatly preferred over another by experience and judgment. |
7 | Extreme importance | An activity is strongly preferred, and its domination is seen in action. |
9 | Absolute importance | A specific activity is supported by the strongest possible evidence. |
2, 4, 6, 8 | Intermediate values | Compromising when necessary. |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
0.00 | 0.00 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
Criteria | C1 | C2 | C3 | Weights | Weights % |
---|---|---|---|---|---|
C1 | 1 | 1 | 5 | 0.455 | 45.5% |
C2 | 1 | 1 | 5 | 0.455 | 45.5% |
C3 | 1/5 | 1/5 | 1 | 0.091 | 9% |
Inconsistency ratio = 0 |
Location | Suitability Score | Area (km2) | Longitude | Latitude |
---|---|---|---|---|
A | 4 | 3031.887 | 35°00′12.99435118″ E | 27°24′35.59010080″ N |
B | 4 | 2166.873 | 37°42′23.53242321″ E | 24°03′09.76752866″ N |
C | 4 | 2157.723 | 37°42′52.49924909″ E | 23°45′10.30069639″ N |
D | 4 | 1425.097 | 37°15′27.50454492″ E | 23°53′10.85928514″ N |
E | 4 | 657.1447 | 35°23′44.85390988″ E | 26°41′57.32080238″ N |
F | 4 | 597.0511 | 34°47′21.39908665″ E | 27°49′38.44687506″ N |
Location | Suitability Score | Area (km2) | Longitude | Latitude |
---|---|---|---|---|
A | 4 | 141.489 | 37°15′52.96970088″ E | 24°30′02.29247796″ N |
B | 4 | 122.2286 | 37°41′53.22453351″ E | 24°09′58.98889420″ N |
C | 4 | 54.94649 | 38°01′36.67413598″ E | 23°58′05.35774664″ N |
D | 4 | 46.63784 | 34°38′20.51304624″ E | 27°56′26.96018920″ N |
Location | Wind Speed (m/s) | Wind Power Density (W/m2) | Water Depth (m) | Distance to Powerlines (m) | Distance to Coastline (m) | Weight |
---|---|---|---|---|---|---|
A | 8.2 | 596.95 | −847 | 52,094 | 52.629 | 3.87 |
B | 8.0 | 575.05 | −629 | 28,203 | 16.7549 | 3.96 |
C | 7.5 | 460.42 | −554 | 53,425 | 41.9155 | 3.42 |
D | 7.5 | 416.16 | −619 | 63,065 | 46.4981 | 3.42 |
E | 7.5 | 455.86 | −823 | 6840 | 58.0909 | 3.42 |
F | 9.5 | 996.19 | −669 | 24,663 | 23.695 | 3.96 |
Location | Wind Speed (m/s) | Wind Power Density (W/m2) | Water Depth (m) | Distance to Powerlines (m) | Distance to Coastline (m) | Weight |
---|---|---|---|---|---|---|
A | 7.92 | 443.97 | −38 | 15,295.6 | 0.118075 | 3.51 |
B | 8.33 | 623.77 | −149 | 15,295.6 | 0.083397 | 4 |
C | 7.03 | 422.60 | −39 | 9673.789 | 0.098445 | 3.51 |
D | 10.74 | 1323.46 | −26 | 6840.402 | 0.084664 | 3.96 |
Station | Latitude | Longitude | Annual Avg. Wind Field m/s | Annual Avg. GWA m/s |
---|---|---|---|---|
Wejh | 26.199 | 36.476 | 7.9 | 6.5 |
Yenbo | 24.144 | 38.063 | 7.5 | 6.9 |
Jeddah-KAIA | 21.7 | 39.183 | 7.2 | 6.5 |
Jizan | 16.901 | 42.586 | 6.3 | 4.5 |
Location | Area (km2) | # of Turbines | Nameplate Capacity (MW) | Average Output (MWa) | Total Annual Generation (MWh/year) |
---|---|---|---|---|---|
A | 3031.887 | 3818 | 19,092 | 6503 | 56,965,410 |
B | 2166.873 | 2729 | 13,645 | 4648 | 40,712,870 |
C | 2157.723 | 2718 | 13,588 | 4628 | 40,540,948 |
D | 1425.097 | 1795 | 8974 | 3057 | 26,775,806 |
E | 657.1447 | 828 | 4138 | 1409 | 12,346,938 |
F | 597.0511 | 752 | 3760 | 1281 | 11,217,852 |
Location | Area (km2) | # of Turbines | Nameplate Capacity (MW) | Average Output (MWa) | Total Annual Generation (MWH/year) |
---|---|---|---|---|---|
A | 141.489 | 178 | 891 | 303 | 2,658,404 |
B | 122.2286 | 154 | 770 | 262 | 2,296,525 |
C | 54.94649 | 69 | 346 | 118 | 1,032,377 |
D | 46.63784 | 59 | 294 | 100 | 876,267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albraheem, L.; Almutlaq, F. A Geographic Information System-Based Model and Analytic Hierarchy Process for Wind Farm Site Selection in the Red Sea. ISPRS Int. J. Geo-Inf. 2024, 13, 416. https://doi.org/10.3390/ijgi13110416
Albraheem L, Almutlaq F. A Geographic Information System-Based Model and Analytic Hierarchy Process for Wind Farm Site Selection in the Red Sea. ISPRS International Journal of Geo-Information. 2024; 13(11):416. https://doi.org/10.3390/ijgi13110416
Chicago/Turabian StyleAlbraheem, Lamya, and Fahad Almutlaq. 2024. "A Geographic Information System-Based Model and Analytic Hierarchy Process for Wind Farm Site Selection in the Red Sea" ISPRS International Journal of Geo-Information 13, no. 11: 416. https://doi.org/10.3390/ijgi13110416
APA StyleAlbraheem, L., & Almutlaq, F. (2024). A Geographic Information System-Based Model and Analytic Hierarchy Process for Wind Farm Site Selection in the Red Sea. ISPRS International Journal of Geo-Information, 13(11), 416. https://doi.org/10.3390/ijgi13110416