An Assessment of the Map-Style Influence on Generalization with CycleGAN: Taking Line Features as an Example
Abstract
:1. Introduction
2. Methods
2.1. Generative Models
2.2. Symbolization Configurations
2.2.1. Line Width
2.2.2. Line Type
2.2.3. Line Color
3. Evaluation Method of Generated Results
3.1. MSE
3.2. SSIM
3.3. PSNR
4. Experiments and Results
4.1. Study Area and Data Preparation
4.2. Generalization of Different Symbolized Linear Features
4.2.1. Generalization of Multi-Width Linear Features
4.2.2. Generalization of Multi-Type Linear Features
- Dashed lines
- 2.
- Framed lines
- 3.
- Striped lines
4.2.3. Generalization of Multi-Color Linear Features
4.3. Applicability of Different Symbolized Linear Features
4.4. Generalization of Mixed Symbolized Linear Features
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Z. Algorithmic Foundation of Multi-Scale Spatial Representation; CRC: Boca Raton, FL, USA, 2007. [Google Scholar]
- Sester, M. Cartographic Generalization. J. Spat. Inf. Sci. 2020, 21, 5–11. [Google Scholar] [CrossRef]
- Harrie, L.; Touya, G.; Oucheikh, R.; Ai, T.; Courtial, A.; Richter, K.F. Machine Learning in Cartography. Cartogr. Geogr. Inf. Sci. 2024, 51, 1–19. [Google Scholar] [CrossRef]
- Touya, G.; Zhang, X.; Lokhat, I. Is Deep Learning the New Agent for Map Generalization? Int. J. Cartogr. 2019, 5, 142–157. [Google Scholar] [CrossRef]
- Sahu, M.; Ohri, A. Vector map generation from aerial imagery using deep learning. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 157–162. [Google Scholar] [CrossRef]
- Karsznia, I.; Adolf, A.; Leyk, S.; Weibel, R. Using Machine Learning and Data Enrichment in the Selection of Roads for Small-Scale Maps. Cartogr. Geogr. Inf. Sci. 2024, 51, 60–78. [Google Scholar] [CrossRef]
- Lisiewicz, M.; Karsznia, I. Verifying and Exploring Settlement Selection Rules and Variables for Small-Scale Maps Using Decision Tree-Based Models. Geogr. Anal. 2021, 53, 560–587. [Google Scholar] [CrossRef]
- Xie, L.; Qian, H.; He, H.; Liu, C.; Duan, P. A Habitation Selection Method by Using Case-Based Reasoning. Acta Geod. Cartogr. Sin. 2017, 46, 1910. [Google Scholar] [CrossRef]
- Hu, H.; Qian, H.; He, H.; Wang, X.; Chen, J. Auto-Selection of Areal Habitation Based on Analytic Hierarchy Process. Acta Geod. Cartogr. Sin. 2016, 45, 740. [Google Scholar] [CrossRef]
- Cheng, B.; Liu, Q.; Li, X.; Wang, Y. Building Simplification Using Backpropagation Neural Networks: A Combination of Cartographers’ Expertise and Raster-Based Local Perception. GIScience Remote Sens. 2013, 50, 527–542. [Google Scholar] [CrossRef]
- Sester, M.; Feng, Y.; Thiemann, F. Building Generalization Using Deep Learning. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–4, 565–572. [Google Scholar] [CrossRef]
- Courtial, A.; Touya, G.; Zhang, X. Generative Adversarial Networks to Generalise Urban Areas in Topographic Maps. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2021, 43, 15–22. [Google Scholar] [CrossRef]
- Du, J.; Wu, F.; Xing, R.; Gong, X.; Yu, L. Segmentation and Sampling Method for Complex Polyline Generalization Based on a Generative Adversarial Network. Geocarto Int. 2022, 37, 4158–4180. [Google Scholar] [CrossRef]
- Courtial, A.; Touya, G.; Zhang, X. Deriving Map Images of Generalised Mountain Roads with Generative Adversarial Networks. Int. J. Geogr. Inf. Sci. 2023, 37, 499–528. [Google Scholar] [CrossRef]
- Viore, M.; Kesidis, A.L.; Krassanakis, V. Deep Learning for Map Generalization: Experimenting with Coastline Data at Different Map Scales. Abstr. Int. Cartogr. Assoc. 2024, 7, 180. [Google Scholar] [CrossRef]
- Touya, G.; Lokhat, I. Deep Learning for Enrichment of Vector Spatial Databases. ACM Trans. Spat. Algorithms Syst. TSAS 2020, 6, 21. [Google Scholar] [CrossRef]
- Courtial, A.; Touya, G.; Zhang, X. Representing Vector Geographic Information As a Tensor for Deep Learning Based Map Generalisation. AGILE GIScience Ser. 2022, 3, 32. [Google Scholar] [CrossRef]
- Yu, H.; Ai, T.; Yang, M.; Huang, L.; Yuan, J. A Recognition Method for Drainage Patterns Using a Graph Convolutional Network. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102696. [Google Scholar] [CrossRef]
- Yu, W.; Chen, Y. Data-driven Polyline Simplification Using a Stacked Autoencoder-based Deep Neural Network. Trans. GIS 2022, 26, 2302–2325. [Google Scholar] [CrossRef]
- Xiao, T.; Ai, T.; Yu, H.; Yang, M.; Liu, P. A Point Selection Method in Map Generalization Using Graph Convolutional Network Model. Cartogr. Geogr. Inf. Sci. 2024, 51, 20–40. [Google Scholar] [CrossRef]
- Chen, X.; Chen, S.; Xu, T.; Yin, B.; Peng, J.; Mei, X.; Li, H. SMAPGAN: Generative Adversarial Network-Based Semisupervised Styled Map Tile Generation Method. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4388–4406. [Google Scholar] [CrossRef]
- Kang, Y.; Gao, S.; Roth, R.E. Transferring Multiscale Map Styles Using Generative Adversarial Networks. Int. J. Cartogr. 2019, 5, 115–141. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the IEEE International Conference on Computer Vision 2017, Venice, Italy, 22–29 October 2017; pp. 2242–2251. [Google Scholar] [CrossRef]
- Zohourian, F.; Pauli, J. Coarse-to-Fine Semantic Road Segmentation Using Super-Pixel Data Model and Semi-Supervised Modified CycleGAN. J. Image Graph. 2022, 10, 132–144. [Google Scholar] [CrossRef]
- Kang, Y.; Rao, J.; Wang, W.; Peng, B.; Gao, S.; Zhang, F. Towards Cartographic Knowledge Encoding with Deep Learning: A Case Study of Building Generalization. In Proceedings of the AutoCarto, Online, 20–22 May 2020; pp. 1–6. [Google Scholar]
- Weibel, R.; Burgardt, D. On-the-Fly Generalization. In Encyclopedia of GIS; Springer: New York, NY, USA, 2008; pp. 339–344. [Google Scholar]
- Scheider, S.; Richter, K.F. Pragmatic GeoAI: Geographic Information as Externalized Practice. KI Kunstl. Intell. 2023, 37, 17–31. [Google Scholar] [CrossRef]
Width | Visual Perception | Model Recognition Difficulty | Detail Preservation Level |
---|---|---|---|
Thin (<0.5 mm) | Clear details | High | High |
Medium (0.5–1 mm) | Clear overall | Medium | Medium |
Thick (1–1.5 mm) | Highlights main features | Low | Low |
Very Thick (≥ 1.5 mm) | Clear spatial distribution | Very Low | Very Low |
Type | Model Recognition Difficulty | Visual Continuity | Structural Complexity |
---|---|---|---|
Dashed lines | Medium | Discontinuous | Low |
Framed lines | Low | Continuous | Medium |
Striped lines | Medium | Discontinuous | High |
Color | Visual Perception | Model Recognition Difficulty | Contrast |
---|---|---|---|
Grayscale | Single color | Medium | Low |
High-contrast color | Rich colors | Low | High |
Type | Example | Structural Complexity | Color Complexity |
---|---|---|---|
Dashed lines | Medium | Low | |
Framed lines | Medium | Medium | |
Striped lines | High | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Chen, H.; Zhang, L. An Assessment of the Map-Style Influence on Generalization with CycleGAN: Taking Line Features as an Example. ISPRS Int. J. Geo-Inf. 2024, 13, 418. https://doi.org/10.3390/ijgi13120418
Yu H, Chen H, Zhang L. An Assessment of the Map-Style Influence on Generalization with CycleGAN: Taking Line Features as an Example. ISPRS International Journal of Geo-Information. 2024; 13(12):418. https://doi.org/10.3390/ijgi13120418
Chicago/Turabian StyleYu, Heng, Haoxuan Chen, and Ling Zhang. 2024. "An Assessment of the Map-Style Influence on Generalization with CycleGAN: Taking Line Features as an Example" ISPRS International Journal of Geo-Information 13, no. 12: 418. https://doi.org/10.3390/ijgi13120418
APA StyleYu, H., Chen, H., & Zhang, L. (2024). An Assessment of the Map-Style Influence on Generalization with CycleGAN: Taking Line Features as an Example. ISPRS International Journal of Geo-Information, 13(12), 418. https://doi.org/10.3390/ijgi13120418