Spatial and Temporal Analysis of Road Traffic Accidents in Major Californian Cities Using a Geographic Information System
Abstract
:1. Introduction
2. Related Work
2.1. Road Traffic Accidents and Geospatial Techniques
2.2. Road Traffic Accidents and Spatio-Temporal Analysis
3. Materials and Methods
3.1. Study Area and Data Collection
3.2. Methods
3.2.1. Spatio-Temporal and Statistical Analyses
- 1.
- Winter consists of December, January, and February;
- 2.
- Spring consists of March, April, and May;
- 3.
- Summer consists of June, July, and August;
- 4.
- Fall consists of September, October, and November.
3.2.2. Accident Severity Analysis
- 1.
- Level 1 (Least Severe): minor accidents may cause property damage;
- 2.
- Level 2 (Moderate Severity): accidents resulting in slight to moderate injuries;
- 3.
- Level 3 (Severe): serious accidents leading to significant injuries;
- 4.
- Level 4 (Most Severe): fatal or catastrophic events may cause death.
3.2.3. Identification of Hotspots
3.2.4. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
- A core point if has high density, i.e., where MinPts is a density threshold defined by the user;
- A border point if p is not a core point, but is in the neighborhood of a core point , i.e., ;
- A noise point.
3.2.5. Population Density Correlation and Getis-Ord Gi*
- are the input points in the sum within the radius distance of the location;
- is the population field value of point i;
- is the distance between point i and the location.
4. Results and Analysis
4.1. Spatio-Temporal and Statistical Analyses
4.2. Severity Analysis of Road Traffic Accidents
4.3. Hotspot Identification
4.4. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
4.5. Population Density Correlation and Hotspot Identification
5. Discussion
6. Conclusions
- Los Angeles was found to have the highest number of accidents throughout the years, highlighting the importance of targeted safety measures in this city. In addition, seasonal analysis showed varying accident patterns across different cities and years, with spring and winter emerging as high-risk seasons for road accidents;
- The severity map indicated that most accidents fell within a level 2 severity, which impacts the injured party’s physical and mental well-being to a low to medium severity;
- Hotspot visualization with space–time analysis showed high clustering in Los Angeles throughout the years. Moreover, the hotspots identified were supported by the time-series and spatial distribution analyses, showing the need for safety measurements in the cities;
- Moreover, our analysis using DBSCAN and KDE techniques provided valuable insights into clustering patterns and population density correlations. We identified high-density regions with a corresponding increase in accident hotspots, emphasizing the need for more measures to mitigate risks in densely populated areas.
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Status Report on Road Safety 2018; Technical Report; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Azari, M.; Paydar, A.; Feizizadeh, B.; Hasanlou, V.G. A GIS-Based Approach for Accident Hotspots Mapping in Mountain Roads Using Seasonal and Geometric Indicators. Appl. Geomat. 2023, 15, 127–139. [Google Scholar] [CrossRef]
- Ouni, F.; Belloumi, M. Pattern of Road Traffic Crash Hot Zones versus Probable Hot Zones in Tunisia: A Geospatial Analysis. Accid. Anal. Prev. 2019, 128, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Prasannakumar, V.; Vijith, H.; Charutha, R.; Geetha, N. Spatio-Temporal Clustering of Road Accidents: GIS Based Analysis and Assessment. Procedia—Soc. Behav. Sci. 2011, 21, 317–325. [Google Scholar] [CrossRef]
- Hazaymeh, K.; Almagbile, A.; Alomari, A.H. Spatiotemporal Analysis of Traffic Accidents Hotspots Based on Geospatial Techniques. ISPRS Int. J. Geo-Inf. 2022, 11, 260. [Google Scholar] [CrossRef]
- Bucsuházy, K.; Matuchová, E.; Zůvala, R.; Moravcová, P.; Kostíková, M.; Mikulec, R. Human Factors Contributing to the Road Traffic Accident Occurrence. Transp. Res. Procedia 2020, 45, 555–561. [Google Scholar] [CrossRef]
- Lai, P.C.; Chan, W.Y. GIS for Road Accident Analysis in Hong Kong. Geogr. Inf. Sci. 2004, 10, 58–67. [Google Scholar] [CrossRef]
- Durduran, S.S. A Decision Making System to Automatic Recognize of Traffic Accidents on the Basis of a GIS Platform. Expert Syst. Appl. 2010, 37, 7729–7736. [Google Scholar] [CrossRef]
- Mesquitela, J.; Elvas, L.; Ferreira, J.; Nunes, L. Data Analytics Process over Road Accidents Data—A Case Study of Lisbon City. ISPRS Int. J. Geo-Inf. 2022, 11, 143. [Google Scholar] [CrossRef]
- Purwanto, P.; Utaya, S.; Handoyo, B.; Bachri, S.; Astuti, I.S.; Sastro, K.; Utomo, B.; Aldianto, Y.E. Spatiotemporal Analysis of COVID-19 Spread with Emerging Hotspot Analysis and Space-Time Cube Models in East Java, Indonesia. ISPRS Int. J. Geo-Inf. 2021, 10, 133. [Google Scholar] [CrossRef]
- Yalcin, G. Non-Spatial Analysis for the Road Traffic Accidents. Procedia—Soc. Behav. Sci. 2013, 92, 1033–1038. [Google Scholar] [CrossRef]
- National Highway Traffic Safety Administration. Traffic Crash Death Estimates for 2022. 2023. Available online: https://www.nhtsa.gov/press-releases/traffic-crash-death-estimates-2022 (accessed on 16 November 2023).
- Liu, C.; Sharma, A. Exploring Spatio-Temporal Effects in Traffic Crash Trend Analysis. Anal. Methods Accid. Res. 2017, 16, 104–116. [Google Scholar] [CrossRef]
- González, S.R.; Loukaitou-Sideris, A.; Chapple, K. Transit Neighborhoods, Commercial Gentrification, and Traffic Crashes: Exploring the Linkages in Los Angeles and the Bay Area. J. Transp. Geogr. 2019, 77, 79–89. [Google Scholar] [CrossRef]
- Hasani, M.; Jahangiri, A.; Sener, I.N.; Munira, S.; Owens, J.M.; Appleyard, B.; Ryan, S.; Turner, S.M.; MacHiani, S.G. Identifying High-Risk Intersections for Walking and Bicycling Using Multiple Data Sources in the City of San Diego. J. Adv. Transp. 2019, 2019, 9072358. [Google Scholar] [CrossRef]
- Kasmalkar, I.; Suckale, J. Traffic Accidents and Delays Present Contrasting Pictures of Traffic Resilience to Coastal Flooding in the San Francisco Bay Area, USA. Urban Clim. 2021, 37, 100851. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Y.; Cheng, K. Exploring the Impact of Climate and Extreme Weather on Fatal Traffic Accidents. Sustainability 2021, 13, 390. [Google Scholar] [CrossRef]
- California Office of Traffic Safety. California Traffic Safety Quick Stats. 2021. Available online: https://www.ots.ca.gov/ots-and-traffic-safety/score-card/ (accessed on 13 November 2023).
- Wang, M.; Yi, J.; Chen, X.; Zhang, W.; Qiang, T. Spatial and Temporal Distribution Analysis of Traffic Accidents Using GIS-Based Data in Harbin. J. Adv. Transp. 2021, 2021, 9207500. [Google Scholar] [CrossRef]
- Afolayan, A.; Easa, S.M.; Abiola, O.S.; Alayaki, F.M.; Folorunso, O. GIS-Based Spatial Analysis of Accident Hotspots: A Nigerian Case Study. Infrastructures 2022, 7, 103. [Google Scholar] [CrossRef]
- Ben-Hamouche, M.; Al-Janahi, A.; Al-Madani, H. Traffic Accidents in Bahrain: A Statistical and Spatial GIS-Based Analysis. J. King Saud Univ. 2011, 23, 1–18. [Google Scholar]
- Yunus, S.; Abdulkarim, I.A. Road traffic crashes and emergency response optimization: A geo-spatial analysis using closest facility and location-allocation methods. Geomat. Nat. Hazards Risk 2022, 13, 1535–1555. [Google Scholar] [CrossRef]
- Al-Mistarehi, B.W.; Alomari, A.H.; Imam, R.; Mashaqba, M. Using Machine Learning Models to Forecast Severity Level of Traffic Crashes by R Studio and ArcGIS. Front. Built Environ. 2022, 8, 860805. [Google Scholar] [CrossRef]
- Al Hamami, M.; Matisziw, T.C. Measuring the Spatiotemporal Evolution of Accident Hot Spots. Accid. Anal. Prev. 2021, 157, 106133. [Google Scholar] [CrossRef] [PubMed]
- Bíl, M.; Andrášik, R.; Sedoník, J. A Detailed Spatiotemporal Analysis of Traffic Crash Hotspots. Appl. Geogr. 2019, 107, 82–90. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Omarzadeh, D.; Sharifi, A.; Rahmani, A.; Lakes, T.; Blaschke, T. A GIS-Based Spatiotemporal Modelling of Urban Traffic Accidents in Tabriz City during the COVID-19 Pandemic. Sustainability 2022, 14, 7468. [Google Scholar] [CrossRef]
- Shahi, S.; Brussel, M.; Grigolon, A. Spatial Analysis of Road Traffic Crashes and User Based Assessment of Road Safety: A Case Study of Rotterdam. Traffic Inj. Prev. 2023, 24, 567–576. [Google Scholar] [CrossRef]
- Mohaymany, A.S.; Shahri, M.; Mirbagheri, B. GIS-Based Method for Detecting High-Crash-Risk Road Segments Using Network Kernel Density Estimation. Geo-Spat. Inf. Sci. 2013, 16, 113–119. [Google Scholar] [CrossRef]
- Zandi, K.; Kashani, A.T.; Okabe, A. Influence of Traffic Parameters on the Spatial Distribution of Crashes on a Freeway to Increase Safety. Sustainability 2023, 15, 493. [Google Scholar] [CrossRef]
- Habib, M.F.; Bridgelall, R.; Motuba, D.; Rahman, B. Exploring the Robustness of Alternative Cluster Detection and the Threshold Distance Method for Crash Hot Spot Analysis: A Study on Vulnerable Road Users. Safety 2023, 9, 57. [Google Scholar] [CrossRef]
- Hisam, F.N.S.A.; Halim, M.B.A.; Naharudin, N.; Hashim, N. GIS Analysis on Road Accident and Road Safety: A Case Study of Road Geometry in Kajang, Selangor. Int. J. Geoinform. 2022, 18, 45–50. [Google Scholar] [CrossRef]
- Tola, A.M.; Demissie, T.A.; Saathoff, F.; Gebissa, A. Severity, Spatial Pattern and Statistical Analysis of Road Traffic Crash Hot Spots in Ethiopia. Appl. Sci. 2021, 11, 8828. [Google Scholar] [CrossRef]
- Khaghani, F. A Deep Learning Approach to Predict Accident Occurrence Based on Traffic Dynamics A Deep Learning Approach to Predict Accident Occurrence Based on Traffic Dynamics. Master’s Thesis, Virginia Polytechnic Institute and State University, Blackburg, VA, USA, 2020. [Google Scholar]
- Moosavi, S.; Samavatian, M.H.; Parthasarathy, S.; Teodorescu, R.; Ramnath, R. Accident Risk Prediction based on Heterogeneous Sparse Data: New Dataset and Insights. In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Chicago, IL, USA, 5–8 November 2019. [Google Scholar]
- Moosavi, S.; Samavatian, M.H.; Parthasarathy, S.; Ramnath, R. A Countrywide Traffic Accident Dataset. arXiv 2019, arXiv:1906.05409. [Google Scholar]
- Çalışkan, M.; Anbaroğlu, B. Space Time Cube Analytics in QGIS and Python for Hot Spot Detection. SoftwareX 2023, 24, 101498. [Google Scholar] [CrossRef]
- Kveladze, I.; Kraak, M.J.; van Elzakker, C.P.J.M. A Methodological Framework for Researching the Usability of the Space-Time Cube. Cartogr. J. 2013, 50, 201–210. [Google Scholar] [CrossRef]
- Huang, Z. Spatiotemporal Evolution Patterns of the COVID-19 Pandemic Using Space-Time Aggregation and Spatial Statistics: A Global Perspective. ISPRS Int. J. -Geo-Inf. 2021, 10, 519. [Google Scholar] [CrossRef]
- Osman, A.; Owusu, A.B.; Adu-Boahen, K.; Atamey, E. Space-Time Cube Approach in Analysing Conflicts in Africa. Soc. Sci. Humanit. Open 2023, 8, 100557. [Google Scholar] [CrossRef]
- Aref, Y.; Se Cemal, K.; Asef, Y.; Amir, S. Automatic Fuzzy-DBSCAN Algorithm for Morphological and Overlapping Datasets. J. Syst. Eng. Electron. 2020, 31, 1245–1253. [Google Scholar] [CrossRef]
- Deng, D. DBSCAN Clustering Algorithm Based on Density. In Proceedings of the 2020 7th International Forum on Electrical Engineering and Automation, IFEEA, Hefei, China, 25–27 September 2020; pp. 949–953. [Google Scholar] [CrossRef]
- Hahsler, M.; Piekenbrock, M.; Doran, D. dbscan: Fast Density-Based Clustering with R. J. Stat. Softw. 2019, 91, 1–30. [Google Scholar] [CrossRef]
- Hanafi, N.; Saadatfar, H. A Fast DBSCAN Algorithm for Big Data Based on Efficient Density Calculation. Expert Syst. Appl. 2022, 203, 117501. [Google Scholar] [CrossRef]
- Weng, S.; Gou, J.; Fan, Z. H-DBSCAN: A Simple Fast DBSCAN Algorithm for Big Data. Proc. Mach. Learn. Res. 2021, 157, 81–96. [Google Scholar]
- Zhu, Q.; Tang, X.; Elahi, A. Application of the Novel Harmony Search Optimization Algorithm for DBSCAN Clustering. Expert Syst. Appl. 2021, 178, 115054. [Google Scholar] [CrossRef]
- Tezel, D.; Inam, S.; Kocaman, S. GIS-Based Assessment of Habitat Networks for Conservation Planning in Kas-Kekova Protected Area (Turkey). ISPRS Int. J. Geo-Inf. 2020, 9, 91. [Google Scholar] [CrossRef]
- Kazmi, S.S.A.; Ahmed, M.; Mumtaz, R.; Anwar, Z. Spatiotemporal Clustering and Analysis of Road Accident Hotspots by Exploiting GIS Technology and Kernel Density Estimation. Comput. J. 2022, 65, 155–176. [Google Scholar] [CrossRef]
- Xie, Z.; Yan, J. Kernel Density Estimation of Traffic Accidents in a Network Space. Comput. Environ. Urban Syst. 2008, 32, 396–406. [Google Scholar] [CrossRef]
- Zahran, E.S.M.M.; Tan, S.J.; Tan, E.H.A.; Mohamad ’Asri Putra, N.A.A.B.; Yap, Y.H.; Rahman, E.K.A. Spatial Analysis of Road Traffic Accident Hotspots: Evaluation and Validation of Recent Approaches Using Road Safety Audit. J. Transp. Saf. Secur. 2021, 13, 575–604. [Google Scholar] [CrossRef]
- ZahranEl-Said, M.M.; Tan, S.J.; Mohamad ’Asri Putra, N.A.A.B.; Tan, E.H.A.; Yap, Y.H.; Abdul Rahman, E.K. Evaluation of Various GIS-Based Methods for the Analysis of Road Traffic Accident Hotspot. MATEC Web Conf. 2019, 258, 03008. [Google Scholar] [CrossRef]
- Chen, Y.C. A Tutorial on Kernel Density Estimation and Recent Advances. Biostat. Epidemiol. 2017, 1, 161–187. [Google Scholar] [CrossRef]
- Kalinic, M.; Krisp, J. Kernel Density Estimation (KDE) vs. Hot-Spot Analysis—Detecting Criminal Hot Spots in the City of San Francisco. In Proceedings of the Agile 2018—21st Conference on Geo-information Science, Lund, Sweden, 12–15 June 2018. [Google Scholar]
- Murad, A.; Khashoggi, B.F. Using GIS for Disease Mapping and Clustering in Jeddah, Saudi Arabia. ISPRS Int. J. Geo-Inf. 2020, 9, 328. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Colak, H.E.; Memisoglu, T.; Erbas, Y.S.; Bediroglu, S. Hot Spot Analysis Based on Network Spatial Weights to Determine Spatial Statistics of Traffic Accidents in Rize, Turkey. Arab. J. Geosci. 2018, 11, 151. [Google Scholar] [CrossRef]
- Hammad, H.M.; Ashraf, M.; Abbas, F.; Bakhat, H.F.; Qaisrani, S.A.; Mubeen, M.; Fahad, S.; Awais, M. Environmental Factors Affecting the Frequency of Road Traffic Accidents: A Case Study of Sub-Urban Area of Pakistan. Environ. Sci. Pollut. Res. 2019, 26, 11674–11685. [Google Scholar] [CrossRef]
- Malin, F.; Norros, I.; Innamaa, S. Accident Risk of Road and Weather Conditions on Different Road Types. Accid. Anal. Prev. 2019, 122, 181–188. [Google Scholar] [CrossRef]
- Potoglou, D.; Carlucci, F.; Cirà, A.; Restaino, M. Factors Associated with Urban Non-Fatal Road-Accident Severity. Int. J. Inj. Control. Saf. Promot. 2018, 25, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Glagolev, S.; Shevtsova, A.; Shekhovtsova, S. Basis for Application of New-Generation Anti-Icing Materials as an Efficient Way to Reduce the Accident Rate on Roads in Winter. Transp. Res. Procedia 2018, 36, 193–198. [Google Scholar] [CrossRef]
- Xi, J.; Hongyu, G.; Jian, T.; Liu, L.; Haizhu, L. A Classification and Recognition Model for the Severity of Road Traffic Accident. Adv. Mech. Eng. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Khanum, H.; Garg, A.; Faheem, M.I. Accident Severity Prediction Modeling for Road Safety Using Random Forest Algorithm: An Analysis of Indian Highways. F1000Research 2023, 12, 494. [Google Scholar] [CrossRef]
- Shaffiee Haghshenas, S.; Guido, G.; Vitale, A.; Astarita, V. Assessment of the Level of Road Crash Severity: Comparison of Intelligence Studies. Expert Syst. Appl. 2023, 234, 121118. [Google Scholar] [CrossRef]
- Liu, G.; Chen, S.; Zeng, Z.; Cui, H.; Fang, Y.; Gu, D.; Yin, Z.; Wang, Z. Risk Factors for Extremely Serious Road Accidents: Results from National Road Accident Statistical Annual Report of China. PLoS ONE 2018, 13, e0201587. [Google Scholar] [CrossRef] [PubMed]
- Aldala’in, S.A.; Abdul Sukor, N.S.; Obaidat, M.T.; Abd Manan, T.S.B. Road Accident Hotspots on Jordan’s Highway Based on Geometric Designs Using Structural Equation Modeling. Appl. Sci. 2023, 13, 95. [Google Scholar] [CrossRef]
- Hashimoto, S.; Yoshiki, S.; Saeki, R.; Mimura, Y.; Ando, R.; Nanba, S. Development and application of traffic accident density estimation models using kernel density estimation. J. Traffic Transp. Eng. (Engl. Ed.) 2016, 3, 262–270. [Google Scholar] [CrossRef]
City | Accident Counts |
---|---|
Los Angeles | 118,764 |
Sacramento | 50,982 |
San Diego | 41,762 |
San Jose | 25,085 |
City Name | Population (as of 2023) |
---|---|
Los Angeles | 12,534,000 |
Sacramento | 2,215,000 |
San Diego | 3,319,000 |
San Jose | 1,821,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsahfi, T. Spatial and Temporal Analysis of Road Traffic Accidents in Major Californian Cities Using a Geographic Information System. ISPRS Int. J. Geo-Inf. 2024, 13, 157. https://doi.org/10.3390/ijgi13050157
Alsahfi T. Spatial and Temporal Analysis of Road Traffic Accidents in Major Californian Cities Using a Geographic Information System. ISPRS International Journal of Geo-Information. 2024; 13(5):157. https://doi.org/10.3390/ijgi13050157
Chicago/Turabian StyleAlsahfi, Tariq. 2024. "Spatial and Temporal Analysis of Road Traffic Accidents in Major Californian Cities Using a Geographic Information System" ISPRS International Journal of Geo-Information 13, no. 5: 157. https://doi.org/10.3390/ijgi13050157
APA StyleAlsahfi, T. (2024). Spatial and Temporal Analysis of Road Traffic Accidents in Major Californian Cities Using a Geographic Information System. ISPRS International Journal of Geo-Information, 13(5), 157. https://doi.org/10.3390/ijgi13050157