A Comprehensive Overview Regarding the Impact of GIS on Property Valuation
Abstract
:1. Introduction
- For municipalities, property taxes are the primary source of revenue, financing not only urban development projects but also social policies;
- Banks and lenders seek to minimize their risk and are interested in the market efficiency of guaranteed properties [3];
- Homebuyers have priorities such as lifestyle, suitability, and location [1];
- For urban planners, the housing market is an efficient tool with which to measure the effect of urban policies and identify the areas that require priority intervention [4].
- Major societal challenges such as climate change, demographic fluctuations, social inclusion, good quality of life, green energy, green building, and technological change are influencing real estate market value;
- Various social challenges are interconnected and there is a need for holistic approaches and collaboration between different sectors to effectively address them;
- Sustainable urban planning, renewable energy transition, energy efficient buildings, social justice, climate resilience and adaptation, sustainable transport, green finance and investment, smart cities, and digital innovation can have a significant impact on land prices and property values;
- Digital technologies and information systems are crucial in optimizing real estate appraisal and shortening the time to assess property values.
2. Materials and Methods
2.1. Data Collection
- GIS is not used effectively in the assessment process (11);
- The assessment was not applied to real estate, e.g., water or groundwater quality, soil, vegetation, etc. (32);
- They were not relevant to the current state of assessment research (31);
- They were not considered relevant to automated assessment or mass appraisal because they focus on biological or chemical analysis (7);
- They were duplicated (3).
2.2. Overview of the Selected Papers
3. Results
3.1. Hedonic Model
3.2. Artificial Intelligence
3.3. Mathematical Appraisal Models
4. Discussion
- Major societal challenges such as climate change, demographic fluctuations, social inclusion, good quality of life, green energy, green building, and technological change are influencing real estate market value.
- 2.
- Various social challenges are interconnected and, therefore, there is a need for holistic approaches and collaboration between different sectors to effectively address them.
- 3.
- Sustainable urban planning, renewable energy transition, energy efficient buildings, social justice, climate resilience and adaptation, sustainable transport, green finance and investment, smart cities, and digital innovation can have a significant impact on land prices and property values.
- 4.
- Digital technologies and information systems play a crucial role in optimizing real estate appraisal and shortening the time to assess property values.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Crosby, H.; Davis, P.; Damoulas, T.; Jarvis, S.A. A Spatio-Temporal, Gaussian Process Regression, Real-Estate Price. In Proceedings of the 24th Acm Sigspatial International Conference on Advances In Proceedings of the Geographic Information Systems (Acm Sigspatial Gis 2016), Burlingame, CA, USA, 31 October–3 November 2016. [Google Scholar]
- Greenhalgh, P.; King, H.; Muldoon-Smith, K.; Adebayo, A.; Ellis, J. Using GIS to Explore the Potential of Business Rating Data to Analyse Stock and Value Change for Land Administration: A Case Study of York. ISPRS Int. J. Geoinf. 2020, 9, 321. [Google Scholar] [CrossRef]
- Argiolas, M. A GIS Based System for Minimizing Acquisition Risk in Real Estate Market. Aesti. Mum. 2012, 333–345. [Google Scholar]
- Nesticò, A.; Bencardino, M. Urban Real Estate Values on Vast Area and Macroeconomic Parameters. Procedia Soc. Behav. Sci. 2016, 223, 410–415. [Google Scholar] [CrossRef]
- Longley, P.; Higgs, G.; Martin, D. The Predictive Use of Gis to Model Property Valuations. Int. J. Geogr. Inf. Syst. 1994, 8, 217–235. [Google Scholar] [CrossRef]
- Pagourtzi, E.; Nikolopoulos, K.; Assimakopoulos, V. Architecture for a Real Estate Analysis Information System Using GIS Techniques Integrated with Fuzzy Theory. J. Prop. Invest. Financ. 2006, 24, 68–78. [Google Scholar] [CrossRef]
- Weinzierl, T.; Heider, K. Assessment of Future Agricultural Conditions in Southwestern Africa Using Fuzzy Logic and High-Resolution Climate Model Scenarios. Erde 2015, 146, 259–270. [Google Scholar] [CrossRef]
- Renigier-Bilozor, M.; Janowski, A.; Walacik, M. Geoscience Methods in Real Estate Market Analyses Subjectivity Decrease. Geosciences 2019, 9, 130. [Google Scholar] [CrossRef]
- Lasota, T.; Telec, Z.; Trawinski, B.; Trawinski, K. Investigation of the ETS Evolving Fuzzy Systems Applied to Real Estate Appraisal. J. Mult.-Valued Log. Soft Comput. 2011, 17, 229–253. [Google Scholar]
- Morillo, M.C.; García-Cepeda, F.; Martínez-Cuevas, S.; Molina, I.; García-Aranda, C. Geostatistical Study of the Rural Property Market Applicable to the Region of Murcia (Spain) by M. Carmen Morillo1 et Al. Appl. Spat. Anal. Policy 2017, 10, 585–607. [Google Scholar] [CrossRef]
- Balaji, L.; Muthukannan, M. Land Use Land Cover Studies and Its Effects on Valuation Using GIS Techniques in Madurai Town Planning Area, Tamilnadu, India. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2020, 983, 012012. [Google Scholar] [CrossRef]
- Demetriou, D. A Spatially Based Artificial Neural Network Mass Valuation Model for Land Consolidation. Environ. Plan. B Urban. Anal. City Sci. 2017, 44, 864–883. [Google Scholar] [CrossRef]
- Garcia, N.; Gamez, M.; Alfaro, E. ANN plus GIS: An Automated System for Property Valuation. Neurocomputing 2008, 71, 733–742. [Google Scholar] [CrossRef]
- Yalpir, S.; Durduran, S.S.; Unel, F.B.; Yolcu, M. Creating A Valuation Map In GIS Through Artificial Neural Network: A Case Study. Acta Montan. Slovaca 2014, 19, 79–89. [Google Scholar]
- Mete, M.O.; Yomralioglu, T. A Hybrid Approach for Mass Valuation of Residential Properties through Geographic Information Systems and Machine Learning Integration. Geogr. Anal. 2022, 55, 535–559. [Google Scholar] [CrossRef]
- Demetriou, D. A GIS-Based Hedonic Price Model for Agricultural Land; Hadjimitsis, D.G., Themistocleous, K., Michaelides, S., Papadavid, G., Eds.; SPIE: Washington, DC, USA, 2015; p. 95350B. [Google Scholar]
- Rosato, P.; Breil, M.; Giupponi, C.; Berto, R. Assessing the Impact of Urban Improvement on Housing Values: A Hedonic Pricing and Multi-Attribute Analysis Model for the Historic Centre of Venice. Buildings 2017, 7, 112. [Google Scholar] [CrossRef]
- Gharbia, S.S.; Naughton, O.; Farrelly, V.; Lyons, R.; Pilla, F. Attitudes to Systemic Risk: The Impact of Flood Risk on the Housing Market in Dublin. In Proceedings of the 18th Mediterranean Electrotechnical Conference: Intelligent and Efficient Technologies and Services for the Citizen, Melecon 2016, Lemesos, Cyprus, 18–20 April 2016. [Google Scholar]
- Ghanbarpour, M.R.; Saravi, M.M.; Salimi, S. Floodplain Inundation Analysis Combined with Contingent Valuation: Implications for Sustainable Flood Risk Management. Water Resour. Manag. 2014, 28, 2491–2505. [Google Scholar] [CrossRef]
- Pilla, F.; Gharbia, S.S.; Lyons, R. How Do Households Perceive Flood-Risk? The Impact of Flooding on the Cost of Accommodation in Dublin, Ireland. Sci. Total Environ. 2019, 650, 144–154. [Google Scholar] [CrossRef]
- Beltrán, A.; Maddison, D.; Elliott, R. The Impact of Flooding on Property Prices: A Repeat-Sales Approach. J. Environ. Econ. Manag. 2019, 95, 62–86. [Google Scholar] [CrossRef]
- Osland, L.; Osth, J.; Nordvik, V. House Price Valuation of Environmental Amenities: An Application of GIS-Derived Data. Reg. Sci. Policy Pract. 2022, 14, 939–959. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N. Using GIS and Landscape Metrics in the Hedonic Price Modeling of the Amenity Value of Urban Green Space: A Case Study in Jinan City, China. Landsc. Urban. Plan. 2007, 79, 240–252. [Google Scholar] [CrossRef]
- Demetriou, D. GIS-Based Automated Valuation Models (AVMs) for Land Consolidation Schemes. In Proceedings of the 6th International Conference on Cartography and GIS, Albena, Bulgaria, 13–17 June 2016. [Google Scholar]
- Adebayo, A.A.; Greenhalgh, P.; Muldoon-Smith, K. Investigating Retail Property Market Dynamics through Spatial Accessibility Measures. J. Eur. Real. Estate Res. 2019, 12, 155–172. [Google Scholar] [CrossRef]
- Mimis, A.; Rovolis, A.; Stamou, M. Property Valuation with Artificial Neural Network: The Case of Athens. J. Prop. Res. 2013, 30, 128–143. [Google Scholar] [CrossRef]
- Sesli, F.A. Creating Real Estate Maps by Using GIS: A Case Study of Atakum-Samsun/Turkey. Acta Montan. Slovaca 2015, 20, 260–270. [Google Scholar]
- Ayalke, Z.; Sisman, A. Nominal Land Valuation with Best-Worst Method Using Geographic Information System: A Case of Atakum, Samsun. ISPRS Int. J. Geoinf. 2022, 11, 213. [Google Scholar] [CrossRef]
- Muresan, I.M.; Imbroane, A.M.; Haidu, I. Arcgis Module For Property Valuation in City of Cluj-Napoca. Geogr. Tech. 2010, 5, 90–104. [Google Scholar]
- Mete, M.O.; Yomralioglu, T. Creation of Nominal Asset Value-Based Maps Using GIS: A Case Study of Istanbul Beyoglu and Gaziosmanpasa Districts. GI_Forum 2019, 7, 98–112. [Google Scholar] [CrossRef]
- Droj, L.; Droj, G. Spatial Decision Support System for Property Taxation Modelling. In Proceedings of the 14th IBIMA Conference on Global Business Transformation through Innovation and Knowledge Managemen, Istanbul, Turkey, 23–24 June 2010; pp. 1746–1758. [Google Scholar]
- Droj, G.; Droj, L. Gis Based Automated Valuation Models—A Genuine Solution For Real Estate Valuation In Romania? In Proceedings of the Conference: GEOMAT 2015, Iasi, Romania, 5–6 November 2015. [Google Scholar]
- Almy, R.R.; Ferguson, A.G. Valuing Our World: Potential Roles for AVMs and CAMA. In Proceedings of the 25th UPAV Congress. “Valuing our World: Challenges Facing the Global Market”, Miami, FL, USA, 2–4 November 2010; pp. 1–16. [Google Scholar]
- Thériault, M.; Des Rosiers, F.; Villeneuve, P.; Kestens, Y. Modelling Interactions of Location with Specific Value of Housing Attributes. Prop. Manag. 2003, 21, 25–62. [Google Scholar] [CrossRef]
- Wuestemann, H.; Kolbe, J. The Impact of Urban Green Space on Real Estate Prices: A Hedonic for the City of Berlin. Raumforsch. Und Raumordn.-Spat. Res. Plan. 2017, 75, 429–438. [Google Scholar] [CrossRef]
- Balogun, T.F. An Assessment of Property Tax Administration in Edo State, Nigeria. Indones. J. Geogr. 2019, 51, 69–77. [Google Scholar] [CrossRef]
- Sipan, I.; Ali, H.M.; Ismail, S.; Abdullah, S. GIS-Based Mass Appraisal Model for Equity and Uniformity of Rating Assessment. In Proceedings of the 26th International Business Information Management Association Conference—Innovation Management and Sustainable Economic Competitive Advantage: From Regional Development to Global Growth, IBIMA 2015, Madrid, Spain, 11–12 November 2015; pp. 3376–3388. [Google Scholar]
- Droj, L.; Droj, G. Usage of Location Analysis Software in the Evaluation of Commercial Real Properties. In Proceedings of the Emerging Markets Queries In Proceedings of the Finance and BusineSS 2014, EMQFB 2014, Bucharest, Romania, 24–25 October 2014; Volume 32, pp. 826–832.
- Morillo, M.C.; García Cepeda, F.; Martínez-Cuevas, S. The Application of Spatial Analysis to Cadastral Zoning of Urban Areas: An Example in the City of Madrid. Surv. Rev. 2017, 49, 83–92. [Google Scholar] [CrossRef]
- Wang, X.; Yang, L.; Li, H.; Lei, J. The Mass Assessment Model of Real Estate Based on GIS and VIKOR Method. In Proceedings of the 2015 International Conference on Architectural, Civil and Hydraulics Engineering, Guangzhou, China, 28–29 November 2015; Atlantis Press: Paris, France, 2015. [Google Scholar]
- Xiaoman, Z.; Xinwei, L.; Xuansheng, C. Research on Real Estate Appraisal Method Based on Feature Engineering and BP Neural Network. In Proceedings of the 2021 2nd International Conference on Artificial Intelligence and Information Systems (icaiis’21), Chongqing, China, 28–30 May 2021. [Google Scholar]
- Kuria, D.; Gachari, M.; Odera, P.; Mvuria, R. Securing Bank Loans and Mortgages Using Real Estate Information Aided by Geospatial Technologies. Int. Trans. J. Eng. Manag. Appl. Sci. Technol. 2013, 4, 129–143. [Google Scholar]
- Kuburić, M.; Tomić, H.; Mastelić Ivić, S. Use of Multicriteria Valuation of Spatial Units in a System of Mass Real Estate Valuation; [Upotreba Višekriterijskog Vrednovanja Prostornih Jedinica u Sustavu Masovnog Vrednovanja Nekretnina]. Kartogr. I Geoinformacije 2012, 11, 58–74. [Google Scholar]
- Zhang, H.; Li, Y.; Liu, B.; Liu, C. The Application of GIS 3D Modeling and Analysis Technology in Real Estate Mass Appraisal—Taking Landscape and Sunlight Factors as the Example. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. —ISPRS Arch. 2014, 40, 363–367. [Google Scholar] [CrossRef]
- Lake, I.R.; Lovett, A.A.; Bateman, I.J.; Day, B. Using Gis and Large-Scale Digital Data to Implement Hedonic Pricing Studies. Int. J. Geogr. Inf. Sci. 2000, 14, 521–541. [Google Scholar] [CrossRef]
- Kara, A.; van Oosterom, P.; Cagdas, V.; Isikdag, U.; Lemmen, C. 3 Dimensional Data Research for Property Valuation in the Context of the LADM Valuation Information Model. Land. Use Policy 2020, 98, 104179. [Google Scholar] [CrossRef]
- Ying, Y.; Koeva, M.; Kuffer, M.; Zevenbergen, J. Toward 3D Property Valuation—A Review of Urban 3D Modelling Methods for Digital Twin Creation. ISPRS Int. J. Geoinf. 2022, 12, 2. [Google Scholar] [CrossRef]
- Arcuri, N.; De Ruggiero, M.; Salvo, F.; Zinno, R. Automated Valuation Methods through the Cost Approach in a BIM and GIS Integration Framework for Smart City Appraisals. Sustainability 2020, 12, 7546. [Google Scholar] [CrossRef]
- Mete, M.O.; Guler, D.; Yomralioglu, T. Towards a 3D Real Estate Valuation Model Using BIM and GIS. In Proceedings of the 6th International Conference on Smart City Applications, Online, 27–29 October 2022; Volume 393, pp. 945–962. [Google Scholar]
- Hamilton, S.E.; Morgan, A. Integrating Lidar, GIS and Hedonic Price Modeling to Measure Amenity Values in Urban Beach Residential Property Markets. Comput. Environ. Urban. Syst. 2010, 34, 133–141. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, J.; Hong, Y.; Liang, H.; He, J. Mapping Fine-scale Urban Housing Prices by Fusing Remotely Sensed Imagery and Social Media Data. Trans. GIS 2018, 22, 561–581. [Google Scholar] [CrossRef]
- Mittal, J.; Byahut, S. Scenic Landscapes, Visual Accessibility and Premium Values in a Single Family Housing Market: A Spatial Hedonic Approach. Environ. Plan. B Urban. Anal. City Sci. 2019, 46, 66–83. [Google Scholar] [CrossRef]
- Czembrowski, P.; Kronenberg, J.; Czepkiewicz, M. Integrating Non-Monetary and Monetary Valuation Methods—SoftGIS and Hedonic Pricing. Ecol. Econ. 2016, 130, 166–175. [Google Scholar] [CrossRef]
- Lazrak, F.; Nijkamp, P.; Rietveld, P.; Rouwendal, J. The Market Value of Cultural Heritage in Urban Areas: An Application of Spatial Hedonic Pricing. J. Geogr. Syst. 2014, 16, 89–114. [Google Scholar] [CrossRef]
- Giaccaria, S.; Frontuto, V.; Dalmazzone, S. Valuing Externalities from Energy Infrastructures through Stated Preferences: A Geographically Stratified Sampling Approach. Appl. Econ. 2016, 48, 5497–5512. [Google Scholar] [CrossRef]
- Lake, I.R.; Lovett, A.A.; Bateman, I.J.; Langford, I.H. Modelling Environmental Influences on Property Prices in an Urban Environment. Comput. Environ. Urban. Syst. 1998, 22, 121–136. [Google Scholar] [CrossRef]
- Popov, A.; Trehub, O. Improvement of The Normative Monetary Evaluation of Settlement Land in the Ecological Context. Geod. Cartogr. 2022, 48, 107–123. [Google Scholar] [CrossRef]
- Bhattacharya, N.; Lamond, J.; Proverbs, D.G.; Hammond, F.; Searle, D. A Framework for Participatory Assessment of Vulnerability of Commercial Property Values to Flooding in the UK. WIT Trans. Ecol. Environ. 2012, 159, 243–251. [Google Scholar] [CrossRef]
- Lawrence, C.B.; Pindilli, E.J.; Hogan, D.M. Valuation of the Flood Attenuation Ecosystem Service in Difficult Run, VA, USA. J. Environ. Manag. 2019, 231, 1056–1064. [Google Scholar] [CrossRef]
- Chock, G.Y.K. Modeling of Hurricane Damage for Hawaii Residential Construction. J. Wind. Eng. Ind. Aerodyn. 2005, 93, 603–622. [Google Scholar] [CrossRef]
- Thomas, G.C.; Cousins, W.J.; Lloydd, D.A.; Heron, D.W.; Mazzoni, S. Post-Earthquake Fire Spread between Buildings Estimating and Costing Extent in Wellington. In Proceedings of the Fire Safety Science; Elsevier: Amsterdam, The Netherlands, 2003; pp. 691–702. [Google Scholar]
- Bernknopf, R.L.; Hearn, P.P.; Wein, A.M.; Strong, D. The Effect of Scientific and Socioeconomic Uncertainty on a Natural Hazards Policy Choice. In Proceedings of the MODSIM 2007—International Congress on Modelling and Simulation—Land, Water and Environmental Management: Integrated Systems for Sustainability, Online, 10–13 December 2007; pp. 1702–1708. [Google Scholar]
- Wei, C.; Fu, M.; Wang, L.; Yang, H.; Tang, F.; Xiong, Y. The Research Development of Hedonic Price Model-Based Real Estate Appraisal in the Era of Big Data. Land 2022, 11, 334. [Google Scholar] [CrossRef]
- Droj, G.; Droj, L. Spatial Data Mining Using GIS Webservices. In Proceedings of the Conference Modern Technologies for the 3rd Millennium, Oradea, Romania, 4–5 April 2019. [Google Scholar]
- Halik, L. Analysis of county geoportals in terms of opportunities to purchase data of the register of real estate prices and values online. Real Estate Manag. Valuat. 2019, 27, 69–78. [Google Scholar] [CrossRef]
- Siejka, M.; Mika, M. Methodology of Inventory the Real Estate Components for the Purpose of Their Valuation Due to Road Construction—Case Study in Krakow. In Proceedings of the 10th International Conference on Environmental Engineering, ICEE, La Vergne, TN, USA, 27–28 April 2017. [Google Scholar]
- Balaji, L.; Muthukannan, M. Investigation into Valuation of Land Using Remote Sensing and GIS in Madurai, Tamilnadu, India. Eur. J. Remote Sens. 2021, 54, 167–175. [Google Scholar] [CrossRef]
- Fu, X.; Jia, T.; Zhang, X.; Li, S.; Zhang, Y. Do Street-Level Scene Perceptions Affect Housing Prices in Chinese Megacities? An Analysis Using Open Access Datasets and Deep Learning. PLoS ONE 2019, 14, e0217505. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; He, S.; Sun, C.; Zhang, H.; Hu, L.; Kang, M. Do Landscape Amenities Impact Private Housing Rental Prices? A Hierarchical Hedonic Modeling Approach Based on Semantic and Sentimental Analysis of Online Housing Advertisements across Five Chinese Megacities. Urban. For. Urban. Green. 2021, 58, 126968. [Google Scholar] [CrossRef]
- Dimopoulos, T.; Labropoulos, T.; Hadjimitsis, D.G. Comparative Analysis of Property Taxation Policies within Greece and Cyprus Evaluating the Use of GIS, CAMA, and Remote Sensing Techniques. In Proceedings of the SPIE—The International Society for Optical Engineering, Paphos, Cyprus, 7–10 August 2014; Volume 9229. [Google Scholar]
- Alsawan, N.M.; Alshurideh, M.T. The Application of Artificial Intelligence in Real Estate Valuation: A Systematic Review. Lect. Notes Data Eng. Commun. Technol. 2023, 152, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Graczyk, M.; Lasota, T.; Telec, Z.; Trawiński, B. Application of Mixture of Experts to Construct Real Estate Appraisal Models; Springer: New York, NY, USA, 2010; pp. 581–589. [Google Scholar]
- Wu, L.; Zhang, Y.; Wei, Y.; Chen, F. A BP Neural Network-Based GIS-Data-Driven Automated Valuation Framework for Benchmark Land Price. Complexity 2022, 2022, 1695265. [Google Scholar] [CrossRef]
- Aydinoglu, A.C.; Bovkir, R. Developing a Mobile Application for Smart Real Estate Information. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIV-4/W3-2020, 89–94. [Google Scholar] [CrossRef]
- Mantel, K.; De Vries, W.T.; Kirk, M. Improving Local Government Services in Jamaica. GIM Int. 2017, 31, 29–31. [Google Scholar]
- Argiolas, M.; Dessì, N.; Marchi, G.; Pes, B. Real Estate Decision Making Processes and Web-Based Applications: An Integrated Approach. Smart Innov. Syst. Technol. 2010, 4, 329–338. [Google Scholar] [CrossRef]
- Law, S.; Paige, B.; Russell, C. Take a Look Around. ACM Trans. Intell. Syst. Technol. 2019, 10, 1–19. [Google Scholar] [CrossRef]
- Rico-Juan, J.R.; Taltavull de La Paz, P. Machine Learning with Explainability or Spatial Hedonics Tools? An Analysis of the Asking Prices in the Housing Market in Alicante, Spain. Expert. Syst. Appl. 2021, 171, 114590. [Google Scholar] [CrossRef]
- Cafarella, M.; Ehrlich, G.; Gao, T.; Haltiwanger, J.; Shapiro, M.; Zhao, L. Using Machine Learning to Construct Hedonic Price Indices; National Bureau of Economic Research: Cambridge, MA, USA, 2023. [Google Scholar]
- Kang, Y.; Zhang, F.; Peng, W.; Gao, S.; Rao, J.; Duarte, F.; Ratti, C. Understanding House Price Appreciation Using Multi-Source Big Geo-Data and Machine Learning. Land. Use Policy 2021, 111, 104919. [Google Scholar] [CrossRef]
- Bencure, J.C.; Tripathi, N.K.; Miyazaki, H.; Ninsawat, S.; Kim, S.M. Development of an Innovative Land Valuation Model (ILVM) for Mass Appraisal Application in Sub-Urban Areas Using AHP: An Integration of Theoretical and Practical Approaches. Sustainability 2019, 11, 3731. [Google Scholar] [CrossRef]
- Chen, M.L.; He, S.J.; Cui, J.F.; Zhang, X.G.; Liu, P.R.; Hao, R. Spatial Analysis of Residential Land Price in Urban Area of Jimo City Based on GIS. In Proceedings of the 2016 2nd International Conference on Architectural, Civil and Hydraulics Engineering (ICACHE 2016), Kunming, China, 29–30 September 2016; Atlantis Press: Paris, France, 2016. [Google Scholar]
- Yalpir, S.; Sisman, S.; Akar, A.U. Cobb-Douglas Hybrid Modelling Approach with Fuzzy-AHP Indexing for Residential Land Value Determining: A Case Study of Konya/Turkey. Iconarp Int. J. Archit. Plan. 2022, 10, 349–378. [Google Scholar] [CrossRef]
- Bunyan Unel, F.; Yalpir, S. Valuations of building plots using the ahp Method. Int. J. Strateg. Prop. Manag. 2019, 23, 197–212. [Google Scholar] [CrossRef]
- Sisman, S.; Akar, A.U.; Yalpir, S. The Novelty Hybrid Model Development Proposal for Mass Appraisal of Real Estates in Sustainable Land Management. Surv. Rev. 2023, 55, 1–20. [Google Scholar] [CrossRef]
- Wang, X.; Lei, J.; Bai, J.; Li, H. A Market Comparison Method Evaluation Model Based on Set Pair Analysis. In Proceedings of the 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering 2015 (ICMMCCE 2015), Xi’an, China, 12–13 December 2015; Volume 39, pp. 1802–1807. [Google Scholar]
- Crosby, H.; Davis, P.; Jarvis, S.A. Exploring New Data Sources to Improve UK Land Parcel Valuation. In Proceedings of the 1st International ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics, UrbanGIS 2015, Bellevue, WA, USA, 3–6 November 2015; pp. 32–35. [Google Scholar]
- BÜNYAN ÜNEL, F.; YALPİR, S. Reduction of Mass Appraisal Criteria with Principal Component Analysis and Integration to GIS. Int. J. Eng. Geosci. 2019, 4, 94–105. [Google Scholar] [CrossRef]
- Wang, D.; Li, V.J. Mass Appraisal Models of Real Estate in the 21st Century: A Systematic Literature Review. Sustainability 2019, 11, 7006. [Google Scholar] [CrossRef]
- Lockwood, T.; Rossini, P. Efficacy in Modelling Location Within the Mass Appraisal Process. Pac. Rim Prop. Res. J. 2011, 17, 418–442. [Google Scholar] [CrossRef]
- McCluskey, W.J.; Borst, R.A. Detecting and Validating Residential Housing Submarkets. Int. J. Hous. Mark. Anal. 2011, 4, 290–318. [Google Scholar] [CrossRef]
- Dimopoulos, T.; Moulas, A. A Proposal of a Mass Appraisal System in Greece with CAMA System: Evaluating GWR and MRA Techniques in Thessaloniki Municipality. Open Geosci. 2016, 8, 675–693. [Google Scholar] [CrossRef]
- Dimopoulos, T.; Yiorkas, C. Implementing GIS in Real Estate Price Prediction and Mass Valuation: The Case Study of Nicosia District. In Proceedings of the Fifth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2017), Paphos, Cyprus, 20–23 March 2017; p. 72. [Google Scholar]
- Locurcio, M.; Morano, P.; Tajani, F.; Liddo, F. Di An Innovative GIS-Based Territorial Information Tool for the Evaluation of Corporate Properties: An Application to the Italian Context. Sustainability 2020, 12, 5836. [Google Scholar] [CrossRef]
- Sisman, S.; Aydinoglu, A.C. Improving Performance of Mass Real Estate Valuation through Application of the Dataset Optimization and Spatially Constrained Multivariate Clustering Analysis. Land. Use Policy 2022, 119, 106167. [Google Scholar] [CrossRef]
- Oetomo, H.W.; Fauzi, R. GIS IN banking industry: The development of spatial model for land in surabaya—Indonesia. Jati-J. Southeast Asian Stud. 2010, 15, 167–188. [Google Scholar]
- Aydinoglu, A.C.; Bovkir, R.; Colkesen, I. Implementing a Mass Valuation Application on Interoperable Land Data Model Designed as an Extension of the National GDI. Surv. Rev. 2021, 53, 349–365. [Google Scholar] [CrossRef]
- Kovyazin, V.F.; Skachkova, M.E.; Dyachkova, I.S. Historical and Cultural Assessment of Urbanized Territories as the Part of Cadastral, Land Management and Other Economic Activities. Geod. I Kartogr. 2020, 966, 57–62. [Google Scholar] [CrossRef]
- Perujo-Villanueva, M.; Colombo, S. Impact of Parcel Fragmentation on the Calculation of the Real Estate of Land Belonging to Farms. New Medit 2021, 20, 97–111. [Google Scholar] [CrossRef]
- Bencardino, M.; Nesticò, A. Spatial Correlation Analysis among Land Values, Income Levels and Population Density. Smart Innov. Syst. Technol. 2019, 100, 572–581. [Google Scholar] [CrossRef]
- Ming, Y.S.; Hin, H.K. Planned Urban Industrialization and Its Effect on Urban Industrial Real Valuation: The Singapore Experience. Habitat. Int. 2006, 30, 509–539. [Google Scholar] [CrossRef]
- Mittal, J.; Byahut, S.; Agarwal, S. Transit, Incentive Zoning, and Affordable Housing—A Proposal for Land-Based Financing Using Smart ICT Systems. Smart Innov. Syst. Technol. 2022, 294, 365–393. [Google Scholar] [CrossRef]
- Salvo, F.; Romita, T.; De Ruggiero, M.; Tavano, D. Residential Tourism and Real Estate Appraisal; [Turismo Residenziale e Valutazione Immobiliare]. Valori E Valutazioni 2020, 2020, 53–58. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Droj, G.; Kwartnik-Pruc, A.; Droj, L. A Comprehensive Overview Regarding the Impact of GIS on Property Valuation. ISPRS Int. J. Geo-Inf. 2024, 13, 175. https://doi.org/10.3390/ijgi13060175
Droj G, Kwartnik-Pruc A, Droj L. A Comprehensive Overview Regarding the Impact of GIS on Property Valuation. ISPRS International Journal of Geo-Information. 2024; 13(6):175. https://doi.org/10.3390/ijgi13060175
Chicago/Turabian StyleDroj, Gabriela, Anita Kwartnik-Pruc, and Laurențiu Droj. 2024. "A Comprehensive Overview Regarding the Impact of GIS on Property Valuation" ISPRS International Journal of Geo-Information 13, no. 6: 175. https://doi.org/10.3390/ijgi13060175
APA StyleDroj, G., Kwartnik-Pruc, A., & Droj, L. (2024). A Comprehensive Overview Regarding the Impact of GIS on Property Valuation. ISPRS International Journal of Geo-Information, 13(6), 175. https://doi.org/10.3390/ijgi13060175