Globally Optimal Relative Pose and Scale Estimation from Only Image Correspondences with Known Vertical Direction
Abstract
:1. Introduction
- A novel globally optimal solver to estimate relative pose and scale is proposed from N 2D-2D point correspondences (N > 5). This problem is transformed into a cost function based on the least-squares sense to minimize algebraic error.
- We transform the cost function to solve two unknowns in two equations, which are composed of the parameter of the relative rotation angle. The highest degree of rotation angle parameter is 16.
- We derive and provide a solver based on polynomial eigenvalues to calculate the relative rotation angle parameter. The translation vector and scale information are obtained from the corresponding eigenvectors.
2. Related Work
3. Methodology
3.1. Epipolar Constraint
3.2. Problem Description
3.3. Globally Optimal Solver
4. Experiments
4.1. Experiments on Synthetic Data
4.2. Experiments on Real-World Data
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Xu, L.; Bao, C. An Adaptive Pose Fusion Method for Indoor Map Construction. ISPRS Int. J. Geo-Inf. 2021, 10, 800. [Google Scholar] [CrossRef]
- Svärm, L.; Enqvist, O.; Kahl, F.; Oskarsson, M. City-scale localization for cameras with known vertical direction. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhou, L.; Chen, W. Automatic Pose Estimation of Uncalibrated Multi-View Images Based on a Planar Object with a Predefined Contour Model. ISPRS Int. J. Geo-Inf. 2016, 5, 244. [Google Scholar] [CrossRef]
- Raposo, C.; Barreto, J.P. Theory and practice of structure-from-motion using affine correspondences. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5470–5478. [Google Scholar]
- Wang, Y.; Liu, X.; Zhao, M.; Xu, X. VIS-SLAM: A Real-Time Dynamic SLAM Algorithm Based on the Fusion of Visual, Inertial, and Semantic Information. ISPRS Int. J. Geo-Inf. 2024, 13, 163. [Google Scholar] [CrossRef]
- Qin, J.; Li, M.; Liao, X.; Zhong, J. Accumulative Errors Optimization for Visual Odometry of ORB-SLAM2 Based on RGB-D Cameras. ISPRS Int. J. Geo-Inf. 2019, 8, 581. [Google Scholar] [CrossRef]
- Mur-Artal, R.; Tardós, J.D. SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot 2017, 33, 1255–1262. [Google Scholar] [CrossRef]
- Niu, Q.; Li, M.; He, S.; Gao, C.; Gary Chan, S.H.; Luo, X. Resource-efficient and Automated Image-based Indoor Localization. ACM Trans. Sens. Netw. 2019, 15, 19. [Google Scholar] [CrossRef]
- Poulose, A.; Han, D.S. Hybrid Indoor Localization on Using IMU Sensors and Smartphone Camera. Sensors 2019, 19, 5084. [Google Scholar] [CrossRef] [PubMed]
- Kawaji, H.; Hatada, K.; Yamasaki, T.; Aizawa, K. Image-based indoor positioning system: Fast image matching using omnidirectional panoramic images. In Proceedings of the 1st ACM International Workshop on Multimodal Pervasive Video Analysis, Firenze, Italy, 25–29 October 2010. [Google Scholar]
- Pless, R. Using many cameras as one. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, 18–20 June 2003; Volume 2, p. II-587. [Google Scholar]
- HenrikStewénius, M.O.; Aström, K.; Nistér, D. Solutions to minimal generalized relative pose problems. In Proceedings of the Workshop on Omnidirectional Vision, Beijing, China, October 2005. [Google Scholar]
- Hee Lee, G.; Pollefeys, M.; Fraundorfer, F. Relative pose estimation for a multi-camera system with known vertical direction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 540–547. [Google Scholar]
- Liu, L.; Li, H.; Dai, Y.; Pan, Q. Robust and efficient relative pose with a multi-camera system for autonomous driving in highly dynamic environments. IEEE Trans. Intell. Transp. 2017, 19, 2432–2444. [Google Scholar] [CrossRef]
- Sweeney, C.; Flynn, J.; Turk, M. Solving for relative pose with a partially known rotation is a quadratic eigenvalue problem. In Proceedings of the 2014 2nd International Conference on 3D Vision, Tokyo, Japan, 8–11 December 2014; Volume 1, pp. 483–490. [Google Scholar]
- Li, H.; Hartley, R.; Kim, J. A linear approach to motion estimation using generalized camera models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Kneip, L.; Li, H. Efficient computation of relative pose for multi-camera systems. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 446–453. [Google Scholar]
- Wu, Q.; Ding, Y.; Qi, X.; Xie, J.; Yang, J. Globally optimal relative pose estimation for multi-camera systems with known gravity direction. In Proceedings of the International Conference on Robotics and Automation, Philadelphia, PA, USA, 23–27 May 2022; pp. 2935–2941. [Google Scholar]
- Guan, B.; Zhao, J.; Barath, D.; Fraundorfer, F. Minimal cases for computing the generalized relative pose using affine correspondences. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 6068–6077. [Google Scholar]
- Guan, B.; Zhao, J.; Barath, D.; Fraundorfer, F. Relative pose estimation for multi-camera systems from affine correspondences. arXiv 2020, arXiv:2007.10700v1. [Google Scholar]
- Kukelova, Z.; Bujnak, M.; Pajdla, T. Closed-form solutions to minimal absolute pose problems with known vertical direction. In Proceedings of the Asian Conference on Computer Vision, Queenstown, New Zealand, 8–12 November 2010; pp. 216–229. [Google Scholar]
- Sweeney, C.; Kneip, L.; Hollerer, T.; Turk, M. Computing similarity transformations from only image correspondences. In Proceedings of the TEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3305–3313. [Google Scholar]
- Kneip, L.; Sweeney, C.; Hartley, R. The generalized relative pose and scale problem: View-graph fusion via 2D-2D registration. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision, Lake Placid, NY, USA, 7–10 March 2016; pp. 1–9. [Google Scholar]
- Grossberg, M.D.; Nayar, S.K. A general imaging model and a method for finding its parameters. In Proceedings of the Eighth IEEE International Conference on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001; Volume 2, pp. 108–115. [Google Scholar]
- Kim, J.H.; Li, H.; Hartley, R. Motion estimation for nonoverlap multicamera rigs: Linear algebraic and L∞ geometric solutions. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 1044–1059. [Google Scholar]
- Guan, B.; Zhao, J.; Barath, D.; Fraundorfer, F. Minimal solvers for relative pose estimation of multi-camera systems using affine correspondences. Int. J. Comput. Vision 2023, 131, 324–345. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, W.; Kneip, L. A certifiably globally optimal solution to generalized essential matrix estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 12034–12043. [Google Scholar]
- Sweeney, C.; Fragoso, V.; Höllerer, T.; Turk, M. gdls: A scalable solution to the generalized pose and scale problem. In Proceedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014; pp. 16–31. [Google Scholar]
- Bujnak, M.; Kukelova, Z.; Pajdla, T. 3d reconstruction from image collections with a single known focal length. In Proceedings of the IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 1803–1810. [Google Scholar]
- Fitzgibbon, A.W. Simultaneous linear estimation of multiple view geometry and lens distortion. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, 8–14 December 2001; Volume 1, p. I. [Google Scholar]
- Ding, Y.; Yang, J.; Kong, H. An efficient solution to the relative pose estimation with a common direction. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation, Paris, France, 31 May–31 August 2020; pp. 11053–11059. [Google Scholar]
- Kukelova, Z.; Bujnak, M.; Pajdla, T. Polynomial eigenvalue solutions to minimal problems in computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 1381–1393. [Google Scholar] [CrossRef]
- Larsson, V.; Astrom, K.; Oskarsson, M. Efficient solvers for minimal problems by syzygy-based reduction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 820–829. [Google Scholar]
- Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The kitti dataset. Int. J. Robot Res. 2013, 32, 1231–1237. [Google Scholar] [CrossRef]
- Schonemann, P. A generalized solution of the orthogonal Procrustes problem. Psychometrika 1966, 31, 1–10. [Google Scholar] [CrossRef]
Degree of | 4 | 8 | 12 | 14 | 16 | 4 | 8 | 12 | 14 | 16 |
Seq | Sw | OURs | ||||
---|---|---|---|---|---|---|
(Degree) | (Degree) | (Degree) | (Degree) | |||
00 | 0.1760 | 3.4598 | 0.0086 | 0.0847 | 1.3452 | 0.0012 |
01 | 0.2509 | 4.1682 | 0.0205 | 0.1042 | 1.5081 | 0.0008 |
02 | 0.1985 | 3.9163 | 0.0096 | 0.0965 | 1.2836 | 0.0010 |
03 | 0.1809 | 3.8168 | 0.0134 | 0.0754 | 1.0739 | 0.0009 |
04 | 0.1026 | 3.6274 | 0.0033 | 0.0590 | 1.0030 | 0.0003 |
05 | 0.2723 | 4.0362 | 0.0160 | 0.0801 | 1.2315 | 0.0008 |
06 | 0.1814 | 3.0784 | 0.0063 | 0.0664 | 1.0562 | 0.0003 |
07 | 0.0945 | 3.4602 | 0.0043 | 0.0452 | 1.1856 | 0.0008 |
08 | 0.1219 | 3.9419 | 0.0059 | 0.0833 | 1.0837 | 0.0012 |
09 | 0.2093 | 3.7111 | 0.0128 | 0.1133 | 1.2027 | 0.0011 |
10 | 0.1984 | 3.6022 | 0.0110 | 0.0864 | 1.3294 | 0.0008 |
AVG | 0.1806 | 3.7107 | 0.0101 | 0.0813 | 1.2094 | 0.0008 |
MAX | 0.2723 | 4.1682 | 0.0205 | 0.1133 | 1.5081 | 0.0012 |
MIN | 0.0945 | 3.0784 | 0.0033 | 0.0452 | 1.0030 | 0.0003 |
SD | 0.0537 | 0.2964 | 0.0050 | 0.0187 | 0.1443 | 0.0002 |
RMSE | 0.1884 | 3.7225 | 0.0113 | 0.0835 | 1.2179 | 0.0008 |
Seq | Rotation (%) | Translation (%) | Scale (%) |
---|---|---|---|
00 | 52% | 61% | 86% |
01 | 58% | 64% | 96% |
02 | 51% | 67% | 90% |
03 | 58% | 72% | 93% |
04 | 42% | 72% | 91% |
05 | 71% | 69% | 95% |
06 | 63% | 65% | 95% |
07 | 52% | 66% | 81% |
08 | 32% | 73% | 80% |
09 | 46% | 68% | 91% |
10 | 56% | 63% | 93% |
AVG | 53% | 67% | 90% |
MIN | 32% | 61% | 80% |
MAX | 71% | 73% | 95% |
SD | 65% | 51% | 94% |
RMSE | 56% | 67% | 92% |
Seq | Kneip | Peter | ||||
---|---|---|---|---|---|---|
(Degree) | (Degree) | (Degree) | (Degree) | |||
00 | 0.9147 | 6.4101 | 0.0204 | 1.9805 | 9.8001 | 0.0712 |
01 | 0.7057 | 5.0460 | 0.0913 | 1.7606 | 7.0888 | 0.1064 |
02 | 0.6269 | 4.9256 | 0.0258 | 1.8166 | 5.9685 | 0.0918 |
03 | 0.7856 | 4.9410 | 0.0835 | 1.8242 | 6.0235 | 0.1123 |
04 | 0.7901 | 4.7540 | 0.0298 | 1.7948 | 5.4217 | 0.0852 |
05 | 0.9512 | 6.0975 | 0.0957 | 1.9278 | 7.6275 | 0.1254 |
06 | 0.7506 | 4.2787 | 0.0277 | 1.9023 | 5.2621 | 0.0902 |
07 | 0.5956 | 5.0482 | 0.0157 | 1.7452 | 7.6125 | 0.0725 |
08 | 0.7816 | 5.1886 | 0.0130 | 1.8722 | 7.2626 | 0.0806 |
09 | 0.8919 | 5.2186 | 0.0816 | 1.9985 | 6.1282 | 0.1235 |
10 | 0.9643 | 4.9204 | 0.0758 | 2.0592 | 6.2176 | 0.1002 |
AVG | 0.8052 | 5.1662 | 0.0509 | 1.8892 | 6.7648 | 0.0963 |
MAX | 1.0643 | 6.4101 | 0.0957 | 2.0592 | 9.8001 | 0.1254 |
MIN | 0.5956 | 4.2787 | 0.0131 | 1.7606 | 5.2621 | 0.0712 |
SD | 0.1340 | 0.5699 | 0.0322 | 0.0894 | 1.2423 | 0.0180 |
RMSE | 0.8163 | 5.1975 | 0.0603 | 1.8913 | 6.8779 | 0.0979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Ye, S.; Liu, C.; Jin, R.; Xia, P.; Yan, K. Globally Optimal Relative Pose and Scale Estimation from Only Image Correspondences with Known Vertical Direction. ISPRS Int. J. Geo-Inf. 2024, 13, 246. https://doi.org/10.3390/ijgi13070246
Yu Z, Ye S, Liu C, Jin R, Xia P, Yan K. Globally Optimal Relative Pose and Scale Estimation from Only Image Correspondences with Known Vertical Direction. ISPRS International Journal of Geo-Information. 2024; 13(7):246. https://doi.org/10.3390/ijgi13070246
Chicago/Turabian StyleYu, Zhenbao, Shirong Ye, Changwei Liu, Ronghe Jin, Pengfei Xia, and Kang Yan. 2024. "Globally Optimal Relative Pose and Scale Estimation from Only Image Correspondences with Known Vertical Direction" ISPRS International Journal of Geo-Information 13, no. 7: 246. https://doi.org/10.3390/ijgi13070246
APA StyleYu, Z., Ye, S., Liu, C., Jin, R., Xia, P., & Yan, K. (2024). Globally Optimal Relative Pose and Scale Estimation from Only Image Correspondences with Known Vertical Direction. ISPRS International Journal of Geo-Information, 13(7), 246. https://doi.org/10.3390/ijgi13070246