Exploring the Spatiotemporal Patterns of Passenger Flows in Expanding Urban Metros: A Case Study of Shenzhen
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. The Smart Card Data of Shenzhen Metro
2.3. The Operational Data of Shenzhen Metro
3. Methods
3.1. Estimating the Section Passenger Flow Volume
3.2. Identifying the Passenger Sources of Congested Sections
3.3. Analyzing the Heterogeneity of Passenger Flows
4. Results
4.1. The Evolution of Passenger Travel Demand with Network Topology
4.1.1. The Network Topology Changes in the Expanding Urban Metro
4.1.2. The Evolution of Passenger Travel Demand
4.2. The Evolution of Section Passenger Flow
4.3. The Evolution of Passenger Sources of Congested Sections
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, T.; Li, M.; Zhou, Y. Measuring Metro Accessibility: An Exploratory Study of Wuhan Based on Multi-Source Urban Data. ISPRS Int. J. Geo-Inf. 2023, 12, 18. [Google Scholar] [CrossRef]
- Dou, M.; Wang, Y.; Dong, S. Integrating Network Centrality and Node-Place Model to Evaluate and Classify Station Areas in Shanghai. ISPRS Int. J. Geo-Inf. 2021, 10, 414. [Google Scholar] [CrossRef]
- Zeng, J.; Tang, J. Combining Knowledge Graph into Metro Passenger Flow Prediction: A Split-Attention Relational Graph Convolutional Network. Expert Syst. Appl. 2023, 213, 118790. [Google Scholar] [CrossRef]
- Ding, X.; Guan, S.; Sun, D.J.; Jia, L. Short Turning Pattern for Relieving Metro Congestion during Peak Hours: The Substance Coherence of Shanghai, China. Eur. Transp. Res. Rev. 2018, 10, 28. [Google Scholar] [CrossRef]
- Jiang, M.; Li, H.; Xu, X.; Xu, S.; Miao, J. Metro Passenger Flow Control with Station-to-Station Cooperation Based on Stop-Skipping and Boarding Limiting. J. Cent. South Univ. 2017, 24, 236–244. [Google Scholar] [CrossRef]
- Shi, J.; Yang, L.; Yang, J.; Zhou, F.; Gao, Z. Cooperative Passenger Flow Control in an Oversaturated Metro Network with Operational Risk Thresholds. Transp. Res. Part C-Emerg. Technol. 2019, 107, 301–336. [Google Scholar] [CrossRef]
- Yuan, F.; Sun, H.; Kang, L.; Wu, J. Passenger Flow Control Strategies for Urban Rail Transit Networks. Appl. Math. Model. 2020, 82, 168–188. [Google Scholar] [CrossRef]
- Azadpeyma, A.; Kashi, E. Level of Service Analysis for Metro Station with Transit Cooperative Research Program (TCRP) Manual: A Case Study—Shohada Station in Iran. Urban Rail Transit 2019, 5, 39–47. [Google Scholar] [CrossRef]
- Huan, N.; Yao, E.; Zhang, J. Demand-Responsive Passenger Flow Control Strategies for Metro Networks Considering Service Fairness and Passengers’ Behavioural Responses. Transp. Res. Part C-Emerg. Technol. 2021, 131, 103335. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, H.; Qu, Y.; Yin, H.; Jin, J.G.; Wu, J. Model and Algorithm of Coordinated Flow Controlling with Station-Based Constraints in a Metro System. Transp. Res. Part e-Logist. Transp. Rev. 2021, 148, 102274. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Yang, X.; Guo, X.; Yin, H.; Sun, H. Multistation Coordinated and Dynamic Passenger Inflow Control for a Metro Line. IET Intell. Transp. Syst. 2020, 14, 1068–1078. [Google Scholar] [CrossRef]
- Ding, H.; Di, Y.; Zheng, X.; Liu, K.; Zhang, W.; Zheng, L. Passenger Arrival Distribution Model and Riding Guidance on an Urban Rail Transit Platform. Phys. A 2021, 571, 125847. [Google Scholar] [CrossRef]
- He, K.; Xu, Z.; Wang, P.; Deng, L.; Tu, L. Congestion Avoidance Routing Based on Large-Scale Social Signals. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2613–2626. [Google Scholar] [CrossRef]
- Lei, Y.; Lu, G.; Zhang, H.; He, B.; Fang, J. Optimizing Total Passenger Waiting Time in an Urban Rail Network: A Passenger Flow Guidance Strategy Based on a Multi-Agent Simulation Approach. Simul. Model. Pract. Theory 2022, 117, 102510. [Google Scholar] [CrossRef]
- Xue, H.; Jia, L.; Li, J.; Guo, J. Jointly Optimized Demand-Oriented Train Timetable and Passenger Flow Control Strategy for a Congested Subway Line under a Short-Turning Operation Pattern. Phys. A 2022, 593, 106957. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, T.; Ning, B.; van den Boom, T.J.J.; De Schutter, B. Passenger-Demands-Oriented Train Scheduling for an Urban Rail Transit Network. Transp. Res. Part C-Emerg. Technol. 2015, 60, 1–23. [Google Scholar] [CrossRef]
- Liu, R.; Li, S.; Yang, L. Collaborative Optimization for Metro Train Scheduling and Train Connections Combined with Passenger Flow Control Strategy. Omega-Int. J. Manag. Sci. 2020, 90, 101990. [Google Scholar] [CrossRef]
- Xu, X.; Li, H.; Liu, J.; Ran, B.; Qin, L. Passenger Flow Control with Multi-Station Coordination in Subway Networks: Algorithm Development and Real-World Case Study. Transp. B-Transp. Dyn. 2019, 7, 446–472. [Google Scholar] [CrossRef]
- Yu, W.; Bai, H.; Chen, J.; Yan, X. Analysis of Space-Time Variation of Passenger Flow and Commuting Characteristics of Residents Using Smart Card Data of Nanjing Metro. Sustainability 2019, 11, 4989. [Google Scholar] [CrossRef]
- Lu, J.; Ren, G.; Xu, L. Analysis of Subway Station Distribution Capacity Based on Automatic Fare Collection Data of Nanjing Metro. J. Transp. Eng. Part A-Syst. 2020, 146, 04019067. [Google Scholar] [CrossRef]
- Peng, J.; Wei, Z.; Yang, Y.; Wang, W.; Qiu, S.; Wang, S. What Size of Aisle Is Necessary? A System Dynamics Model for Mitigating Bottleneck Congestion in Entrance Halls of Metro Stations. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22923–22936. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Y.; Mao, X.; Guo, S.; Zhang, M. Congestion Evaluation of Pedestrians in Metro Stations Based on Normal-Cloud Theory. Appl. Sci. 2019, 9, 3624. [Google Scholar] [CrossRef]
- Kang Graduate, Y.; Yi, C.; Lee, S. Correlation between Characteristic of Subway Network and Congestion in Subway Train. In Proceedings of the International Symposium on City Planning (ISCP 2013), Sendai City, Miyagi Prefecture, Japan, 22–24 August 2013. [Google Scholar]
- Haywood, L.; Koning, M. The Distribution of Crowding Costs in Public Transport: New Evidence from Paris. Transp. Res. Part A-Policy Pract. 2015, 77, 182–201. [Google Scholar] [CrossRef]
- Lv, S.; Yang, H.; Zhang, F.; Wang, P. Identifying the Bottlenecks of Urban Metros and Analyzing the Passenger Source. In Proceedings of the 23rd Joint COTA International Conference of Transportation Professionals (CICTP 2022), Changsha, China, 14–17 July 2022; pp. 625–2635. [Google Scholar]
- Wang, C.; Wang, P. Data, Methods, and Applications of Traffic Source Prediction. In Transportation Analytics in the Era of Big Data; Ukkusuri, S.V., Yang, C., Eds.; Springer: New York, NY, USA, 2019; pp. 105–120. [Google Scholar]
- Lv, S.; Wang, K.; Yang, H.; Wang, P. An Origin–Destination Passenger Flow Prediction System Based on Convolutional Neural Network and Passenger Source-Based Attention Mechanism. Expert Syst. Appl. 2024, 238, 121989. [Google Scholar] [CrossRef]
- Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef]
- Si, B.; Zhong, M.; Liu, J.; Gao, Z.; Wu, J. Development of a Transfer-Cost-Based Logit Assignment Model for the Beijing Rail Transit Network Using Automated Fare Collection Data. J. Adv. Transp. 2013, 47, 297–318. [Google Scholar] [CrossRef]
- Wang, K.; Guo, B.; Yang, H.; Li, M.; Zhang, F.; Wang, P. A Semi-Supervised Co-Training Model for Predicting Passenger Flow Change in Expanding Subways. Expert Syst. Appl. 2022, 209, 118310. [Google Scholar] [CrossRef]
- Wang, K.; Wang, P.; Huang, Z.; Ling, X.; Zhang, F.; Chen, A. A Two-Step Model for Predicting Travel Demand in Expanding Subways. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19534–19543. [Google Scholar] [CrossRef]
- Bandyopadhyay, S. The Absolute Gini Is a More Reliable Measure of Inequality for Time Dependent Analyses (Compared with the Relative Gini). Econ. Lett. 2018, 162, 135–139. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H. A General and Simple Method for Obtaining R2 from Generalized Linear Mixed-Effects Models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar]
- Liu, S.; Yao, E.; Cheng, X.; Zhang, Y. Evaluating the Impact of New Lines on Entrance/Exit Passenger Flow of Adjacent Existing Stations in Urban Rail Transit System. Transp. Res. Procedia 2017, 25, 2625–2638. [Google Scholar] [CrossRef]
- Reddy, A.; Lu, A.; Wang, T. Subway Productivity, Profitability, and Performance. Transp. Res. Record 2010, 25, 48–58. [Google Scholar] [CrossRef]
- Zhou, Q.; Mao, B.; Peng, S.; Huang, J.; Tian, P. Analysis of the Impacts of Passenger Demand on the Profitability of Different Types of Urban Rail Transit. Promet 2023, 35, 71–86. [Google Scholar] [CrossRef]
- Yang, J.; Chen, S.; Qin, P.; Lu, F.; Liu, A.A. The Effect of Subway Expansions on Vehicle Congestion: Evidence from Beijing. J. Environ. Econ. Manag. 2018, 88, 114–133. [Google Scholar] [CrossRef]
- Guo, G.; Zhang, T. A Residual Spatio-Temporal Architecture for Travel Demand Forecasting. Transp. Res. Part C-Emerg. Technol. 2020, 115, 102639. [Google Scholar] [CrossRef]
- Gu, Y.; Jiang, C.; Zhang, J.; Zou, B. Subways and Road Congestion. Am. Econ. J.-Appl. Econ. 2021, 13, 83–115. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Li, H.; Jiang, M. Capacity-Oriented Passenger Flow Control under Uncertain Demand: Algorithm Development and Real-World Case Study. Transp. Res. Part e-Logist. Transp. Rev. 2016, 87, 130–148. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, T.; Zhang, G.; Zhu, W.; Hamm, N.A.S.; Liu, Y.; Zhang, J.; Yao, X. Exploring the Relationship between the Spatial Distribution of Different Age Populations and Points of Interest (POI) in China. ISPRS Int. J. Geo-Inf. 2022, 11, 215. [Google Scholar] [CrossRef]
Card ID | Station ID | Station Name | Line ID | Time | Tapping Type | Gate ID |
---|---|---|---|---|---|---|
66*****8 | 26*****9 | Yijing | Line5 | 20180115221151 | 21 | IGT-119 |
68*****0 | 26*****1 | Gushu | Line1 | 20180115214907 | 22 | AGT-101 |
25*****6 | 26*****9 | Yijing | Line5 | 20180115220820 | 21 | IGT-119 |
33*****0 | 26*****9 | Yijing | Line5 | 20180115220811 | 22 | IGT-119 |
Time Period | Lines in Operation | The Number of Stations | The number of Sections |
---|---|---|---|
November 2014 | 1, 2, 3, 4, 5 | 118 | 252 |
April 2016 | 1, 2, 3, 4, 5 | 118 | 252 |
August 2016 | 1, 2, 3, 4, 5, 11 | 132 | 286 |
December 2016 | 1, 2, 3, 4, 5, 7, 9, 11 | 166 | 380 |
January 2018 | 1, 2, 3, 4, 5, 7, 9, 11 | 166 | 380 |
Line | November 2014 | April 2016 | August 2016 | December 2016 | January 2018 |
---|---|---|---|---|---|
Line 1 | 4 | 3 | 3 | 3 | 3 |
Line 2 | 8 | 6 | 6 | 5 | 5 |
Line 3 | 6 | 6 | 6 | 6 | 6 |
Line 4 | 6 | 6 | 6 | 6 | 6 |
Line 5 | 9 | 6 | 6 | 5 | 5 |
Line 7 | \ | \ | \ | 10 | 5 |
Line 9 | \ | \ | \ | 10 | 5 |
Line 11 | \ | \ | 5 | 5 | 5 |
Time Period | ||||
---|---|---|---|---|
November 2014 | −1.19 | 10,364.16 | 12.39 | 0.92 |
April 2016 | −1.24 | 10,081.03 | 11.06 | 0.92 |
August 2016 | −1.16 | 16,132.38 | 13.18 | 0.98 |
December 2016 | −1.22 | 11,908.00 | 11.54 | 0.95 |
January 2018 | −1.17 | 17,820.46 | 14.70 | 0.99 |
Time | Type | Coefficient | p | Type | Coefficient | p |
---|---|---|---|---|---|---|
7:30–9:30 a.m. | Catering services | 22.158 | 0.061 | Domestic services | −5.270 | 0.651 |
Companies | −12.025 | 0.014 | Residences | 38.717 | 0.032 | |
Public facilities | −161.492 | 0 | Population | 0.026 | 0.425 | |
5:30–7:30 p.m. | Catering services | 5.802 | 0.157 | Domestic services | −13.330 | 0.001 |
Companies | 5.132 | 0.003 | Residence | −3.729 | 0.549 | |
Public facilities | 72.129 | 0 | Population | 0.025 | 0.026 |
Reduction Rate of Section Passenger Flow in the Case Study Congested Section | The Number of Controlled Passengers Using Strategy S1 | The Number of Controlled Passengers Using Strategy S2 |
---|---|---|
4% | 2074 | 15,494 |
8% | 3567 | 18,774 |
12% | 5055 | 24,837 |
16% | 6543 | 32,277 |
20% | 8241 | 34,944 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, S.; Yang, H.; Lu, X.; Zhang, F.; Wang, P. Exploring the Spatiotemporal Patterns of Passenger Flows in Expanding Urban Metros: A Case Study of Shenzhen. ISPRS Int. J. Geo-Inf. 2024, 13, 267. https://doi.org/10.3390/ijgi13080267
Lv S, Yang H, Lu X, Zhang F, Wang P. Exploring the Spatiotemporal Patterns of Passenger Flows in Expanding Urban Metros: A Case Study of Shenzhen. ISPRS International Journal of Geo-Information. 2024; 13(8):267. https://doi.org/10.3390/ijgi13080267
Chicago/Turabian StyleLv, Sirui, Hu Yang, Xin Lu, Fan Zhang, and Pu Wang. 2024. "Exploring the Spatiotemporal Patterns of Passenger Flows in Expanding Urban Metros: A Case Study of Shenzhen" ISPRS International Journal of Geo-Information 13, no. 8: 267. https://doi.org/10.3390/ijgi13080267
APA StyleLv, S., Yang, H., Lu, X., Zhang, F., & Wang, P. (2024). Exploring the Spatiotemporal Patterns of Passenger Flows in Expanding Urban Metros: A Case Study of Shenzhen. ISPRS International Journal of Geo-Information, 13(8), 267. https://doi.org/10.3390/ijgi13080267