Investigating Spatial Effects through Machine Learning and Leveraging Explainable AI for Child Malnutrition in Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Data Collection
2.2. Variables
2.3. Statistical Analysis
3. Results
Validation of Spatial Lag Component through XGBoost and Random Forest
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations System Standing Committee on Nutrition (UNSCN). Nutrition and the Post-2015 Sustainable Development Goals; UNSCN: Geneva, Switzerland, 2014. [Google Scholar]
- UNICEF. Global Nutrition Report; United Nations Global Marketplace: New York, NY, USA, 2018. [Google Scholar]
- UNICEF. National Nutrition Survey Pakistan; United Nations Global Marketplace: New York, NY, USA, 2017. [Google Scholar]
- Khan, A.Y.; Fatima, K.; Ali, M. Sanitation ladder and undernutrition among under-five children in Pakistan. Environ. Sci. Pollut. Res. 2021, 28, 38749–38763. [Google Scholar] [CrossRef] [PubMed]
- Qamar, K.; Nchasi, G.; Mirha, H.T.; Siddiqui, J.A.; Jahangir, K.; Shaeen, S.K.; Islam, Z.; Essar, M.Y. Water sanitation problem in Pakistan: A review on disease prevalence, strategies for treatment and prevention. Ann. Med. Surg. 2022, 82, 104709. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.C.; Haddad, L. Reducing Child Undernutrition: Past Drivers and Priorities for the Post-MDG Era. World Dev. 2015, 68, 180–204. [Google Scholar] [CrossRef]
- Kim, R.; Mejía-Guevara, I.; Corsi, D.J.; Aguayo, V.M.; Subramanian, S. Relative importance of 13 correlates of child stunting in South Asia: Insights from nationally representative data from Afghanistan, Bangladesh, India, Nepal, and Pakistan. Soc. Sci. Med. 2017, 187, 144–154. [Google Scholar] [CrossRef]
- Rizal, M.F.; van Doorslaer, E. Explaining the fall of socioeconomic inequality in childhood stunting in Indonesia. SSM Popul. Health 2019, 9, 100469. [Google Scholar] [CrossRef]
- Saaka, M.; Saapiire, F.N.; Dogoli, R.N. Independent and joint contribution of inappropriate complementary feeding and poor water, sanitation and hygiene (WASH) practices to stunted child growth. J. Nutr. Sci. 2021, 10, e109. [Google Scholar] [CrossRef]
- Beal, T.; Le, D.T.; Trinh, T.H.; Burra, D.D.; Huynh, T.; Duong, T.T.; Truong, T.M.; Nguyen, D.S.; Nguyen, K.T.; de Haan, S.; et al. Child stunting is associated with child, maternal, and environmental factors in Vietnam. Matern. Child Nutr. 2019, 15, e12826. [Google Scholar] [CrossRef]
- Kumar, P.; Chauhan, S.; Patel, R.; Srivastava, S.; Bansod, D.W. Prevalence and factors associated with triple burden of malnutrition among mother-child pairs in India: A study based on National Family Health Survey 2015–16. BMC Public Health 2021, 21, 391. [Google Scholar] [CrossRef]
- Kim, R.; Rajpal, S.; Joe, W.; Corsi, D.J.; Sankar, R.; Kumar, A.; Subramanian, S. Assessing associational strength of 23 correlates of child anthropometric failure: An econometric analysis of the 2015–2016 National Family Health Survey, India. Soc. Sci. Med. 2019, 238, 112374. [Google Scholar] [CrossRef]
- Efevbera, Y.; Bhabha, J.; Farmer, P.E.; Fink, G. Girl child marriage as a risk factor for early childhood development and stunting. Soc. Sci. Med. 2017, 185, 91–101. [Google Scholar] [CrossRef]
- Usman, M.; Kopczewska, K. Spatial and Machine Learning Approach to Model Childhood Stunting in Pakistan: Role of Socio-Economic and Environmental Factors. Int. J. Environ. Res. Public Health 2022, 19, 10967. [Google Scholar] [CrossRef] [PubMed]
- Kinyoki, D.K.; Berkley, J.A.; Moloney, G.M.; Odundo, E.O.; Kandala, N.-B.; Noor, A.M. Environmental predictors of stunting among children under-five in Somalia: Cross-sectional studies from 2007 to 2010. BMC Public Health 2016, 16, 654. [Google Scholar] [CrossRef] [PubMed]
- Thiede, B.C.; Gray, C. Climate exposures and child undernutrition: Evidence from Indonesia. Soc. Sci. Med. 2020, 265, 113298. [Google Scholar] [CrossRef] [PubMed]
- Johnson, F.A. Spatiotemporal clustering and correlates of childhood stunting in Ghana: Analysis of the fixed and nonlinear associative effects of socio-demographic and socio-ecological factors. PLoS ONE 2022, 17, e0263726. [Google Scholar]
- Gupta, A.K.; Santhya, K.G. Proximal and contextual correlates of childhood stunting in India: A geo-spatial analysis. PLoS ONE 2020, 15, e0237661. [Google Scholar] [CrossRef] [PubMed]
- Tamir, T.T.; Techane, M.A.; Dessie, M.T.; Atalell, K.A. Applied nutritional investigation spatial variation and determinants of stunting among children aged less than 5 y in Ethiopia: A spatial and multilevel analysis of Ethiopian Demographic and Health Survey 2019. Nutrition 2022, 103–104, 111786. [Google Scholar] [CrossRef]
- Hailu, B.A.; Bogale, G.G.; Beyene, J. Spatial heterogeneity and factors influencing stunting and severe stunting among under-5 children in Ethiopia: Spatial and multilevel analysis. Sci. Rep. 2020, 10, 16427. [Google Scholar] [CrossRef]
- Ndagijimana, A.; Nduwayezu, G.; Kagoyire, C.; Elfving, K.; Umubyeyi, A.; Mansourian, A.; Lind, T. Childhood stunting is highly clustered in Northern Province of Rwanda: A spatial analysis of a population-based study. Heliyon 2024, 10, e24922. [Google Scholar] [CrossRef]
- Ahmad, D.; Afzal, M.; Imtiaz, A. Effect of socioeconomic factors on malnutrition among children in Pakistan. Future Bus. J. 2020, 6, 30. [Google Scholar] [CrossRef]
- Multiple Indicator Cluster Survey 2017–2018—Punjab. (2018, November 1). UNICEF Pakistan. Available online: https://www.unicef.org/pakistan/reports/multiple-indicator-cluster-survey-2017-18-punjab (accessed on 13 December 2023).
- Integrated Context Analysis (ICA): On Vulnerability to Food Insecurity and Natural Hazards—Pakistan, 2017. Available online: https://reliefweb.int/report/pakistan/integrated-context-analysis-ica-vulnerability-food-insecurity-and-natural-hazards (accessed on 10 November 2023).
- Anselin, L. The Moran scatterplot as an ESDA tool to assess local instability in spatial association. In Spatial Analytical Perspectives on GIS; Routledge: Abingdon-on-Thames, UK, 2019; pp. 111–126. [Google Scholar]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774. [Google Scholar]
- Li, X.; Du, M.; Chen, J.; Chai, Y.; Lakkaraju, H.; Xiong, H. M4: A Unified XAI Benchmark for Faithfulness Evaluation of Feature Attribution Methods across Metrics, Modalities and Models. Adv. Neural Inf. Process. Syst. 2023, 36, 1630–1643. [Google Scholar]
- Rothman, D. Hands-On Explainable AI (XAI) with Python: Interpret, Visualize, Explain, and Integrate Reliable AI for Fair, Secure, and Trustworthy AI Apps; Packt Publishing Ltd.: Birmingham, UK, 2020. [Google Scholar]
- Naz, Z.; Khan MU, G.; Saba, T.; Rehman, A.; Nobanee, H.; Bahaj, S.A. An explainable AI-enabled framework for interpreting pulmonary diseases from chest radiographs. Cancers 2023, 15, 314. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Wong, Y.D.; Li, M.Z.-F.; Palanisamy, C.; Chai, C. A feature learning approach based on XGBoost for driving assessment and risk prediction. Accid. Anal. Prev. 2019, 129, 170–179. [Google Scholar] [CrossRef]
- Akhtar, K.; Yaseen, M.U.; Imran, M.; Khattak SB, A.; Nasralla, M.M. Predicting inmate suicidal behavior with an interpretable ensemble machine learning approach in smart prisons. PeerJ Comput. Sci. 2024, 10, e2051. [Google Scholar] [CrossRef]
- Rehman, A.; Haseeb, K.; Saba, T.; Lloret, J.; Sendra, S. An optimization model with network edges for multimedia sensors using artificial intelligence of things. Sensors 2021, 21, 7103. [Google Scholar] [CrossRef]
- Mahapatra, B.; Walia, M.; Rao, C.A.R.; Raju, B.M.K.; Saggurti, N. Vulnerability of agriculture to climate change increases the risk of child malnutrition: Evidence from a large-scale observational study in India. PLoS ONE 2021, 16, e0253637. [Google Scholar] [CrossRef]
- Okunlola, O.A.; Kassouri, Y. Empirical investigation of the agriculture–malnutrition nexus in Africa: Spatial clustering and spillover effects. Rev. Dev. Econ. 2023, 27, 685–709. [Google Scholar] [CrossRef]
- Rahman, M.A.; Halder, H.R.; Rahman, M.S.; Parvez, M. Poverty and childhood malnutrition: Evidence-based on a nationally representative survey of Bangladesh. PLoS ONE 2021, 16, e0256235. [Google Scholar]
- Siddiqui, F.; Salam, R.A.; Lassi, Z.S.; Das, J.K. The Intertwined Relationship Between Malnutrition and Poverty. Front. Public Health 2020, 8, 453. [Google Scholar] [CrossRef]
- Adeyeye, S.A.O.; Ashaolu, T.J.; Bolaji, O.T.; Abegunde, T.A.; Omoyajowo, A.O. Africa and the Nexus of poverty, malnutrition and diseases. Crit. Rev. Food Sci. Nutr. 2023, 63, 641–656. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Global Nutrition Overview; United Nations: New York, NY, USA, 2022. [Google Scholar]
- National Disaster Management Authority. Pakistan (2022) Floods Response Plan: 1—Pakistan; United Nations Office for the Coordination of Humanitarian Affairs: New York, NY, USA, 2022. [Google Scholar]
Variables | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
Stunting (%) | 40.33 | 14.95 | 10.10 | 78.60 |
Mean household size | 7.57 | 2.40 | 3.90 | 19.0 |
Premature birth rate (%) | 11.37 | 11.48 | 0.10 | 75.30 |
Full immunization (%) | 42.56 | 24.93 | 13.30 | 85.40 |
Multidimensional poverty (%) | 40.98 | 21.53 | 2.0 | 87.80 |
Female literacy (%) | 38.48 | 22.86 | 3.50 | 84.70 |
Women’s exposure to mass media (%) | 31.12 | 30.62 | 0.00 | 86.60 |
Marriage before 15 (%) | 6.89 | 4.49 | 0.80 | 29.40 |
Variables | OLS Model | SDEM Model |
---|---|---|
Female literacy | −0.07 (0.07) | −0.004 (0.08) |
Multidimensional poverty | 0.34 (0.08 ***) | 0.24 (0.08 *) |
Full immunization | −0.08 (0.05) | −0.01 (0.05) |
Marriage before age 15 | 0.72 (0.227 **) | 0.81 (0.21 **) |
Women’s exposure to mass media | −0.13 (0.04 **) | −0.01 (0.07) |
Premature birth rate | 0.07 (0.07) | 0.06 (0.06) |
Mean household size | 0.15 (0.35) | −0.07 (0.32) |
Flood and drought vulnerability Low | −0.41 (2.20 *) | −4.67 (2.32 *) |
Flood and drought vulnerability High | 0.51 (2.10 *) | 2.08 (1.98 *) |
Spatial lag | ||
Mass media exposure | −0.33 (0.09 **) | |
Flood and drought vulnerability High | 7.06 (3.79 *) | |
Spatial lag-λ | 0.09 (0.13) | |
Model diagnostics | ||
Adjusted R-square | 0.58 | 0.71 |
AIC | 1065.2 | 1063.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Usman, M.; Irshad, A.u.R.; Rashid, M.; Khattak, A. Investigating Spatial Effects through Machine Learning and Leveraging Explainable AI for Child Malnutrition in Pakistan. ISPRS Int. J. Geo-Inf. 2024, 13, 330. https://doi.org/10.3390/ijgi13090330
Zhang X, Usman M, Irshad AuR, Rashid M, Khattak A. Investigating Spatial Effects through Machine Learning and Leveraging Explainable AI for Child Malnutrition in Pakistan. ISPRS International Journal of Geo-Information. 2024; 13(9):330. https://doi.org/10.3390/ijgi13090330
Chicago/Turabian StyleZhang, Xiaoyi, Muhammad Usman, Ateeq ur Rehman Irshad, Mudassar Rashid, and Amira Khattak. 2024. "Investigating Spatial Effects through Machine Learning and Leveraging Explainable AI for Child Malnutrition in Pakistan" ISPRS International Journal of Geo-Information 13, no. 9: 330. https://doi.org/10.3390/ijgi13090330
APA StyleZhang, X., Usman, M., Irshad, A. u. R., Rashid, M., & Khattak, A. (2024). Investigating Spatial Effects through Machine Learning and Leveraging Explainable AI for Child Malnutrition in Pakistan. ISPRS International Journal of Geo-Information, 13(9), 330. https://doi.org/10.3390/ijgi13090330