Urban–Rural Exposure to Flood Hazard and Social Vulnerability in the Conterminous United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Floodplain Data
2.3. Urban–Rural Classification
2.4. Social Vulnerability Variables
2.5. SVI Construction
2.6. Statistical Analysis
3. Results
3.1. Spatial Distributions and Patterns
3.2. Regression Models and Spatial Variability
3.2.1. The Overall Model
3.2.2. Urban–Rural Differences
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations International Strategy for Disaster Reduction (UNISDR). Global Assessment Report on Disaster Risk Reduction; United Nations International Strategy for Disaster Reduction (UNISDR): Geneva, Switzerland, 2013. [Google Scholar]
- Swain, D.L.; Langenbrunner, B.; Neelin, J.D.; Hall, A. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Change 2018, 8, 427–433. [Google Scholar] [CrossRef]
- USGS Fact Sheet 2006–3026: Flood Hazards—A National Threat. 2006. Available online: https://pubs.usgs.gov/fs/2006/3026/ (accessed on 15 September 2023).
- Chen, X.; Zhang, H.; Chen, W.; Huang, G. Urbanization and climate change impacts on future flood risk in the Pearl River Delta under shared socioeconomic pathways. Sci. Total Environ. 2021, 762, 143144. [Google Scholar] [CrossRef]
- Wing, O.E.; Bates, P.D.; Smith, A.M.; Sampson, C.C.; Johnson, K.A.; Fargione, J.; Morefield, P. Estimates of present and future flood risk in the conterminous United States. Environ. Res. Lett. 2018, 13, 034023. [Google Scholar] [CrossRef]
- FEMA’s National Preparedness Report Underscores Continued Threat of Climate Change. FEMA.gov. 2022. Available online: https://www.fema.gov/press-release/20221229/femas-national-preparedness-report-underscores-continued-threat-climate (accessed on 15 September 2023).
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Singh, S.R.; Eghdami, M.R.; Singh, S. The concept of social vulnerability: A review from disasters perspectives. Int. J. Interdiscip. Multidiscip. Stud. 2014, 1, 71–82. [Google Scholar]
- Flanagan, B.E.; Gregory, E.W.; Hallisey, E.J.; Heitgerd, J.L.; Lewis, B. A social vulnerability index for disaster management. J. Homel. Secur. Emerg. Manag. 2011, 8. [Google Scholar] [CrossRef]
- Chakraborty, L.; Rus, H.; Henstra, D.; Thistlethwaite, J.; Minano, A.; Scott, D. Exploring spatial heterogeneity and environmental injustices in exposure to flood hazards using geographically weighted regression. Environ. Res. 2022, 210, 112982. [Google Scholar] [CrossRef]
- Brulle, R.J.; Pellow, D.N. Environmental justice: Human health and environmental inequalities. Annu. Rev. Public Health 2006, 27, 103–124. [Google Scholar] [CrossRef]
- Adger, W.N. Vulnerability. Glob. Environ. Change 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Qiang, Y. Disparities of population exposed to flood hazards in the United States. J. Environ. Manag. 2019, 232, 295–304. [Google Scholar] [CrossRef]
- Tate, E.; Rahman, M.A.; Emrich, C.T.; Sampson, C.C. Flood exposure and social vulnerability in the United States. Nat. Hazards 2021, 106, 435–457. [Google Scholar] [CrossRef]
- Collins, T.W.; Grineski, S.E.; Chakraborty, J.; Flores, A.B. Environmental injustice and Hurricane Harvey: A household-level study of socially disparate flood exposures in Greater Houston, Texas, USA. Environ. Res. 2019, 179 Pt A, 108772. [Google Scholar] [CrossRef]
- Chakraborty, L.; Thistlethwaite, J.; Scott, D.; Henstra, D.; Minano, A.; Rus, H. Assessing social vulnerability and identifying spatial hotspots of flood risk to inform socially just flood management policy. Risk Anal. 2023, 43, 1058–1078. [Google Scholar] [CrossRef] [PubMed]
- Maantay, J.; Maroko, A. Mapping Urban Risk: Flood Hazards, Race, & Environmental Justice in New York. Appl. Geogr. 2009, 29, 111–124. [Google Scholar] [CrossRef]
- Chakraborty, L.; Thistlethwaite, J.; Minano, A.; Henstra, D.; Scott, D. Leveraging Hazard, Exposure, and Social Vulnerability Data to Assess Flood Risk to Indigenous Communities in Canada. Int. J. Disaster Risk Sci. 2021, 12, 821–838. [Google Scholar] [CrossRef]
- Qiang, Y.; Lam, N.S.N.; Cai, H.; Zou, L. Changes in Exposure to Flood Hazards in the United States. Ann. Am. Assoc. Geogr. 2017, 107, 1332–1350. [Google Scholar] [CrossRef]
- Collins, T.W.; Grineski, S.E.; Chakraborty, J. Environmental injustice and flood risk: A conceptual model and case comparison of metropolitan Miami and Houston, USA. Reg. Environ. Chang. 2018, 18, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Connor, A. When It Rains, It Floods: A Socio-Spatial Flood Vulnerability Analysis of Alexandria, Virginia. 2023. Available online: https://ecommons.cornell.edu/items/faccef84-fe25-4df0-897d-3a4887d7261b (accessed on 15 September 2023).
- Montgomery, M.C.; Chakraborty, J. Assessing the environmental justice consequences of flood risk: A case study in Miami, Florida. Environ. Res. Lett. 2015, 10, 095010. [Google Scholar] [CrossRef]
- Jamshed, A.; Birkmann, J.; Feldmeyer, D.; Rana, I.A. A conceptual framework to understand the dynamics of rural-urban linkages for rural flood vulnerability. Sustainability 2020, 12, 2894. [Google Scholar] [CrossRef]
- Tyler, J.; Entress, R.M.; Sun, P.; Noonan, D.; Sadiq, A.A. Is flood mitigation funding distributed equitably? Evidence from coastal states in the southeastern United States. J. Flood Risk Manag. 2023, 16, e12886. [Google Scholar] [CrossRef]
- Tascón-González, L.; Ferrer-Julià, M.; Ruiz, M.; García-Meléndez, E. Social vulnerability assessment for flood risk analysis. Water 2020, 12, 558. [Google Scholar] [CrossRef]
- Rehman, S.; Sahana, M.; Hong, H.; Sajjad, H.; Ahmed, B.B. A systematic review on approaches and methods used for flood vulnerability assessment: Framework for future research. Nat. Hazards 2019, 96, 975–998. [Google Scholar] [CrossRef]
- Moreira, L.L.; de Brito, M.M.; Kobiyama, M. Effects of different normalization, aggregation, and classification methods on the construction of flood vulnerability indexes. Water 2021, 13, 98. [Google Scholar] [CrossRef]
- Woznicki, S.A.; Baynes, J.; Panlasigui, S.; Mehaffey, M.; Neale, A. Development of a spatially complete floodplain map of the conterminous United States using random forest. Sci. Total Environ. 2019, 647, 942–953. [Google Scholar] [CrossRef]
- USDA ERS—Rural-Urban Commuting Area Codes. 2023. Available online: https://www.ers.usda.gov/dataproducts/rural-urban-commuting-area-codes (accessed on 15 September 2023).
- USDA ERS—Documentation. 2023. Available online: https://www.ers.usda.gov/data-products/rural-urbancommuting-area-codes/documentation/ (accessed on 15 September 2023).
- US Census Bureau. Relationship Files. 2023. Available online: https://www.census.gov/geographies/reference-files/time-series/geo/relationshipfiles.2020.html (accessed on 15 September 2023).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar] [CrossRef]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Yoon, D.K. Assessment of social vulnerability to natural disasters: A comparative study. Natural Hazards. 2012, 63, 823–843. [Google Scholar] [CrossRef]
- Huang, Q.; Jackson, S.; Derakhshan, S.; Lee, L.; Pham, E.; Jackson, A.; Cutter, S.L. Urban-rural differences in COVID-19 exposures and outcomes in the South: A preliminary analysis of South Carolina. PLoS ONE 2021, 16, e0246548. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M.E. Geographically weighted regression. Sage Handb. Spat. Anal. 2009, 1, 243–254. [Google Scholar] [CrossRef]
- Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Fotheringham, A.S. mgwr: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS Int. J. Geo-Inf. 2019, 8, 269. [Google Scholar] [CrossRef]
- Buzzelli, M.; Jerrett, M. Geographies of Susceptibility and Exposure in the City: Environmental Inequity of Traffic-Related Air Pollution in Toronto. Can. J. Reg. Sci. 2006, 30, 195–210. [Google Scholar]
- Carrier, M.; Apparicio, P.; Séguin, A.M. Road traffic noise in Montreal and environmental equity: What is the situation for the most vulnerable population groups? J. Transp. Geogr. 2016, 51, 1–8. [Google Scholar] [CrossRef]
- Crouse, D.L.; Ross, N.A.; Goldberg, M.S. Double burden of deprivation and high concentrations of ambient air pollution at the neighbourhood scale in Montreal, Canada. Soc. Sci. Med. (1982) 2009, 69, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Dale, L.M.; Goudreau, S.; Perron, S.; Ragettli, M.S.; Hatzopoulou, M.; Smargiassi, A. Socioeconomic status and environmental noise exposure in Montreal, Canada. BMC Public Health 2015, 15, 205. [Google Scholar] [CrossRef]
- Pinault, L.; Crouse, D.; Jerrett, M.; Brauer, M.; Tjepkema, M. Spatial associations between socioeconomic groups and NO2 air pollution exposure within three large Canadian cities. Environ. Res. 2016, 147, 373–382. [Google Scholar] [CrossRef]
- Tooke, T.R.; Klinkenberg, B.; Coops, N.C. A geographical approach to identifying vegetation-related environmental equity in Canadian cities. Environ. Plan. B Plan. Des. 2010, 37, 1040–1056. [Google Scholar] [CrossRef]
- Holifield, R.; Porter, M.; Walker, G. Spaces of environmental justice: Frameworks for critical engagement. Antipode 2009, 41, 591–612. [Google Scholar] [CrossRef]
Urban Areas | Rural Areas |
---|---|
Metropolitan area core (RUCA = 1) | Micropolitan area core (RUCA = 4) |
Metropolitan area high commuting (RUCA = 2) | Micropolitan area high commuting (RUCA = 5) |
Metropolitan area low commuting (RUCA = 3) | Micropolitan area low commuting (RUCA = 6) |
Small town core (RUCA = 7) | |
Small town high commuting (RUCA = 8) | |
Small town low commuting (RUCA = 9) | |
Rural (RUCA = 10) |
Variables | Description |
---|---|
E_POV150 | Persons below 150% poverty estimate, 2016–2020 ACS |
E_UNEMP | Civilians (age 16+) unemployed estimate, 2016–2020 ACS |
E_HBURD | Housing cost-burdened occupied housing units with annual income less than USD 75,000 (30%+ of income spent on housing costs) estimate, 2016–2020 ACS |
E_NOHSDP | Persons (age 25+) with no high school diploma estimate, 2016–2020 ACS |
E_UNINSUR | Uninsured in the total civilian noninstitutionalized population estimate, 2016–2020 ACS |
E_AGE65 | Persons aged 65 and older estimate, 2016–2020 ACS |
E_AGE17 | Persons aged 17 and younger estimate, 2016–2020 ACS |
E_DISABL | Civilian noninstitutionalized population with a disability estimate, 2016–2020 ACS |
E_SNGPNT | Single-parent household with children under 18 estimate, 2016–2020 ACS |
E_LIMENG | Persons (age 5+) who speak English “less than well” estimate, 2016–2020 ACS |
E_MINRTY | Minority (Hispanic or Latino (of any race); Black and African American, Not Hispanic or Latino; American Indian and Alaska Native, Not Hispanic or Latino; Asian, Not Hispanic or Latino; Native Hawaiian and Other Pacific Islander, Not Hispanic or Latino; Two or More Races, Not Hispanic or Latino; Other Races, Not Hispanic or Latino) estimate, 2016–2020 ACS |
E_MUNIT | Housing in structures with 10 or more units estimate, 2016–2020 ACS |
E_MOBILE | Mobile homes estimate, 2016–2020 ACS |
E_CROWD | At household level (occupied housing units), more people than rooms estimate, 2016–2020 ACS |
E_NOVEH | Households with no vehicle available estimate, 2016–2020 ACS |
E_GROUPQ | Persons in group quarters estimate, 2016–2020 ACS |
Component Number | Component Name | Percentage of Variation Explained (%) | Dominant Variable | Correlation |
---|---|---|---|---|
1 | Socioeconomic Disadvantage | 35.58 | E_POV150 | 0.80 |
2 | Elderly and Disability | 11.14 | E_AGE65 | 0.79 |
3 | Housing Density and Vehicle Access | 10.91 | E_MUNIT | 0.81 |
4 | Youth and Mobile Housing | 7.25 | E_AGE17 | 0.76 |
5 | Group Quarters and Unemployment | 6.49 | E_GROUPQ | 0.64 |
Overall (n = 66,543) | ||||
---|---|---|---|---|
OLS | GWR | |||
Variables | Coeff | p-value | Min | Max |
Intercept | −0.498 | 0.000 | −2.602 | 1.388 |
Socioeconomic Disadvantage | −0.099 | 0.000 | −1.035 | 0.428 |
Elderly and Disability | 0.258 | 0.000 | −0.588 | 1.112 |
Housing Density and Vehicle Access | −0.287 | 0.000 | −2.423 | 0.763 |
Youth and Mobile Housing | 0.205 | 0.000 | −0.795 | 1.502 |
Group Quarters and Unemployment | −0.009 | 0.022 | −1.529 | 1.619 |
AICc | 186,261.678 | 153,877.144 | ||
R-squared | 0.276 | 0.666 | ||
Urban (n = 51,990) | ||||
OLS | GWR | |||
Variables | Coeff | p-value | Min | Max |
Intercept | −0.68 | 0.000 | −2.633 | 1.153 |
Socioeconomic Disadvantage | −0.068 | 0.000 | −0.673 | 0.353 |
Elderly and Disability | 0.254 | 0.000 | −0.61 | 1.148 |
Housing Density and Vehicle Access | −0.228 | 0.000 | −1.558 | 0.782 |
Youth and Mobile Housing | 0.133 | 0.000 | −0.785 | 1.179 |
Group Quarters and Unemployment | 0.008 | 0.056 | −1.25 | 1.335 |
AICc | 141,489.392 | 122,807.785 | ||
R-squared | 0.219 | 0.589 | ||
Rural (n = 14,553) | ||||
OLS | GWR | |||
Variables | Coeff | p-value | Min | Max |
Intercept | 0.099 | 0.009 | −1.034 | 1.329 |
Socioeconomic Disadvantage | −0.158 | 0.004 | −0.778 | 0.364 |
Elderly and Disability | 0.097 | 0.006 | −0.483 | 0.75 |
Housing Density and Vehicle Access | −0.431 | 0.009 | −1.169 | 0.341 |
Youth and Mobility | 0.077 | 0.009 | −0.672 | 1.001 |
Group Quarters and Unemployment | −0.042 | 0.007 | −1.258 | 0.906 |
AICc | 35,232.112 | 31,232.905 | ||
R-squared | 0.236 | 0.552 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhungana, B.; Liu, W. Urban–Rural Exposure to Flood Hazard and Social Vulnerability in the Conterminous United States. ISPRS Int. J. Geo-Inf. 2024, 13, 339. https://doi.org/10.3390/ijgi13090339
Dhungana B, Liu W. Urban–Rural Exposure to Flood Hazard and Social Vulnerability in the Conterminous United States. ISPRS International Journal of Geo-Information. 2024; 13(9):339. https://doi.org/10.3390/ijgi13090339
Chicago/Turabian StyleDhungana, Bishal, and Weibo Liu. 2024. "Urban–Rural Exposure to Flood Hazard and Social Vulnerability in the Conterminous United States" ISPRS International Journal of Geo-Information 13, no. 9: 339. https://doi.org/10.3390/ijgi13090339
APA StyleDhungana, B., & Liu, W. (2024). Urban–Rural Exposure to Flood Hazard and Social Vulnerability in the Conterminous United States. ISPRS International Journal of Geo-Information, 13(9), 339. https://doi.org/10.3390/ijgi13090339