Conceptual Issues Regarding the Development of Underground Railway Laser Scanning Systems
Abstract
:1. Introduction
2. Solutions for Bridging GNSS Outages
2.1. Current Strategies to GNSS Outages
2.1.1. POS Architecture
2.1.2. Optimal Smoothing Algorithm
2.1.3. Velocity Updates
2.1.4. Landmark Updates
2.1.5. Photogrammetric Bridging
2.1.6. Simplified Mobile Profile Scanning
2.2. Alternative Approaches for URLS Systems
2.2.1. Localized Tunnel Projection
2.2.3. Dual-IMU Architecture
2.2.4. Velocity Updates
2.2.5. Coordinate Updates
2.3. Integrated Approach for URLS
3. Potential Development and Applications
3.1. Real-Time or Near Real-Time Monitoring
3.2. Train-Borne Hazard Detection
3.3. Train Localization
3.4. Train Control Automation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yen, K.S.; Akin, K.; Lofton, A.; Ravani, B.; Lasky, T.A. Using Mobile Laser Scanning to Produce Digital Terrain Models of Pavement Surfaces; Final Report; University of California at Davis: Davis, CA, USA, 2010. [Google Scholar]
- Puente, I.; González-Jorge, H.; Arias, P.; Armesto, J. Land-based mobile laser scanning systems: A review. In Proceedings of 2011 ISPRS Workshop Laser Scanning, Calgary, AL, Canada, 29–31 August 2011.
- Puente, I.; González-Jorge, H.; Martínez-Sánchez, J.; Arias, P. Review of mobile mapping and surveying technologies. Measurement 2013, 46, 2127–2145. [Google Scholar] [CrossRef]
- Morgan, D. Using mobile LiDAR to survey railway infrastructure. Lynx mobile mapper. In Proceedings of FIG Commissions 5, 6 and SSGA Workshop, Lake Baikal, Russia, 23–30 July 2009; pp. 32–40.
- Lesler, M.; Perry, G.; McNease, K. Using mobile LiDAR to survey a railway line for asset Inventory. In Proceedings of the American Society for Photogrammetry and Remote Sensing (ASPRS) 2010 Annual Conference, San Diego, CA, USA, 26–30 April 2010.
- Kremer, J.; Grimm, A. The RailMapper—A dedicated mobile LiDAR mapping system for railway networks. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39-B5, 477–482. [Google Scholar]
- Zhu, L.; Hyypa, J. The use of airborne and mobile laser scanning for modeling railway environments in 3D. Remote Sens. 2014, 6, 3075–3100. [Google Scholar] [CrossRef]
- Yoon, J.S.; Sagong, M.; Lee, J.S.; Lee, K.S. Feature extraction of a concrete tunnel liner from 3D laser scanning data. NDT E Int. 2009, 42, 97–105. [Google Scholar] [CrossRef]
- Fraunhofer IPM—Clearance Profile Scanner CPS. Available online: http://www.ipm.fraunhofer.de/content/dam/ipm/de/PDFs/produktblaetter/OF/LSC/CPS_web.pdf (accessed on 18 July 2014).
- Zhou, J.; Knedlik, S.; Loffeld, O. INS/GPS tightly-coupled Integration using adaptive unscented particle filter. J. Navig. 2010, 63, 491–511. [Google Scholar] [CrossRef]
- Nassar, S.; Shin, E.; Niu, X.; El-Sheimy, N. Accurate INS/GPS positioning with different inertial systems using various algorithms for bridging GPS outages. In Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation, Long Beach, CA, USA, 13–16 September 2005.
- Mostafa, M.; Hutton, J.; Reid, B. GPS/IMU products—The Applanix approach. In Photogrammetric Week 2001; Wichmann Verlag: Heidelberg, Germany, 2001; pp. 63–83. [Google Scholar]
- Thies, T. A Vessel-Based Mobile Mapping System—From Sensor Integration to Multipurpose Products. Master’s Thesis, HafenCity University, Hamburg, Germany, 28 February 2011. [Google Scholar]
- Chu, C.H.; Chiang, K.W. The performance of a tight INS/GNSS/photogrammetric integration scheme for land based MMS applications in GNSS denied environments. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39-B1, 479–484. [Google Scholar]
- Boavida, J.; Oliveira, A.; Santos, B. Precise long tunnel survey using the Riegl VMX-250 mobile laser scanning system. In Proceedings of the 2012 RIEGL International Airborne and Mobile User Conference, Orlando, FL, USA, 27 February–1 March 2012.
- Imanishi, A.; Tachibana, K.; Tsukahara, K. The development of accuracy maintenance method for mobile mapping system (MMS) data at GPS invisible area. In Proceedings of the FIG Working Week 2011, Marrakech, Morocco, 18–22 May 2011.
- Klein, I.; Filin, S. LiDAR and INS fusion in periods of GPS outages for mobile laser scanning mapping systems. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 38-5/W12, 231–236. [Google Scholar]
- Bayoud, F.A.; Skaloud, J.; Merminod, B. Photogrammetry derived navigation parameters for INS Kalman filter updates. In Proceedings of the 2004 International Society for Photogrammetry and Remote Sensing (ISPRS) Congress, Istanbul, Turkey, 12–23 July 2004; pp. 252–257.
- Roncella, R.; Remondino, F.; Forlani, G. Photogrammetric bridging of GPS outages in mobile mapping. Proc. Videometrics VIII SPIE-IS T Electron. Imaging 2005, 5665, 308–319. [Google Scholar]
- Hassan, T.; Ellum, C.; El-Sheimy, N. Bridging land-based mobile mapping using photogrammetric adjustments. In Proceedings of the 2006 International Society for Photogrammetry and Remote Sensing (ISPRS) Commission I Symposium, From Sensors to Imagery, Paris, France, 4–6 May 2006; pp. 128–139.
- Chaplin, B.A. Motion Estimation from Stereo Image Sequences for a Mobile Mapping System. Master’s Thesis, University of Calgary, Calgary, AB, Canada, July 1999. [Google Scholar]
- Hunter, G. Mobile mapping—The StreetMapper approach. In Photogrammetric Week 2009; Wichmann: Berlin, Germany, 2009; pp. 179–190. [Google Scholar]
- Gonçalves, J.A.; Mendes, R.; Araújo, E.; Oliveira, A.; Boavida, J. Planar projection of mobile laser scanning data in tunnels. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39-B3, 109–113. [Google Scholar]
- Hartwig, K.; Grimm, M.; Meyer Zu Hörste, M.; Lemmer, K. Requirements for safety relevant positioning applications in rail traffic—A demonstrator for a train borne navigation platform called “DemoOrt”. In Proceedings of the 7th World Congress on Railway Research WCRR, Montréal, QC, Canada, 4–8 June 2006.
- Becker, U.; Hänsel, F.; May, J.; Poliak, J.; Schnieder, E. Vehicle Autarkic Positioning as a Basis for a Low Cost Train Protection System on Secondary Lines; Technische Universität Braunschweig: Braunschweig, Germany, 2006. [Google Scholar]
- Geistler, A. Train location with eddy current sensors. In Computers in Railways VIII; Allan, J., Hill, R.J., Brebbia, C.A., Sciutto, G., Sone, S., Eds.; WIT Press: Southampton, UK, 2002; pp. 1053–1062. [Google Scholar]
- Mirabadi, A.; Mort, N.; Schmid, F. Application of sensor fusion to railway systems. In Proceedings of the 1996 IEEE/SICE/RSJ International Conference on Multisensor Fusion Integration Intelligent Systems, Washington, DC, USA, 8–11 December 1996; pp. 185–192.
- Elseberg, J.; Borrmann, D.; Nüchter, A. 6DOF semi-rigid SLAM for mobile scanning. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 1865–1870.
- Suzuki, T.; Kitamura, M.; Amano, Y.; Hashizume, T. 6-DOF localization for a mobile robot using outdoor 3D voxel maps. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 18–22 October 2010; pp. 5737–5743.
- Elseberg, J.; Borrmann, D.; Nüchter, A. Algorithmic solutions for computing precise maximum likelihood 3D point clouds from mobile laser scanning platforms. Remote Sens. 2013, 5, 5871–5906. [Google Scholar] [CrossRef]
- Stoyanov, T.; Lilienthal, A.J. Maximum likelihood point cloud acquisition from a mobile platform. In Proceedings of the 2009 IEEE International Conference on Advanced Robotics, Munich, Germany, 9–10 June 2009; pp. 1–6.
- Madeira, S.; Gonçalves, J.; Bastos, L. Sensor integration in a low cost land mobile mapping system. Sensors 2012, 12, 2935–2953. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.C.; Kim, G.D.; Jeong, W.T.; Park, Y.T. Vision-based object detection for passenger’s safety in railway platform. In Proceedings of the 2008 International Conference on Control, Automation and Systems, Seoul, Korea, 14–17 October 2008; pp. 2134–2137.
- Uribe, J.A.; Fonseca, L.; Vargas, J.F. Video based system for railroad collision warning. In Proceedings of the 2012 International Carnahan Conference on Security Technology, Boston, MA, USA, 15–18 October 2012; pp. 280–285.
- Kruse, F.; Milch, S.; Rohling, H. Multi sensor system for obstacle detection in train applications. In Proceedings of the 2003 IEEE Intelligent Vehicles Symposium, Columbus, OH, USA, 9–11 June 2003; pp. 42–46.
- Passarella, R.; Tutuko, B.; Prasetyo, A.P.P. Design concept of train obstacle detection system in Indonesia. IJRRAS 2011, 9, 453–460. [Google Scholar]
- Schauer, J.; Nüchter, A. Efficient point cloud collision detection and analysis in a tunnel environment using kinematic laser scanning and K-D tree search. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, R.; King, B.; Chen, W. Conceptual Issues Regarding the Development of Underground Railway Laser Scanning Systems. ISPRS Int. J. Geo-Inf. 2015, 4, 185-198. https://doi.org/10.3390/ijgi4010185
Hung R, King B, Chen W. Conceptual Issues Regarding the Development of Underground Railway Laser Scanning Systems. ISPRS International Journal of Geo-Information. 2015; 4(1):185-198. https://doi.org/10.3390/ijgi4010185
Chicago/Turabian StyleHung, Raymond, Bruce King, and Wu Chen. 2015. "Conceptual Issues Regarding the Development of Underground Railway Laser Scanning Systems" ISPRS International Journal of Geo-Information 4, no. 1: 185-198. https://doi.org/10.3390/ijgi4010185
APA StyleHung, R., King, B., & Chen, W. (2015). Conceptual Issues Regarding the Development of Underground Railway Laser Scanning Systems. ISPRS International Journal of Geo-Information, 4(1), 185-198. https://doi.org/10.3390/ijgi4010185