Understanding Spatiotemporal Patterns of Human Convergence and Divergence Using Mobile Phone Location Data
Abstract
:1. Introduction
- What spatiotemporal patterns of human convergence and divergence exist in the daily urban context?
- What types of urban land use are generally associated with these patterns?
2. Literature Review
3. Study Area and Dataset
4. Methodology
4.1. Extracting Indicators of Human Convergence and Divergence
4.2. Classification of Human Convergence and Divergence Using Quantile Rules
4.3. Cluster Analysis of the Temporal Patterns of Human Convergence and Divergence
5. Results and Discussion
5.1. Convergence and Divergence in each Time Slot
5.2. Temporal Patterns of Human Convergence and Divergence
5.3. Spatial Distribution of Derived Clusters
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kwan, M.P. GIS methods in time-geographic research: Geocomputation and geovisualization of human activity patterns. Geogr. Ann. Ser. B Hum. Geogr. 2004, 86, 267–280. [Google Scholar] [CrossRef]
- Chen, J.; Shaw, S.L.; Yu, H.; Lu, F.; Chai, Y.; Jia, Q. Exploratory data analysis of activity diary data: A space-time GIS approach. J. Trans. Geogr. 2011, 19, 394–404. [Google Scholar] [CrossRef]
- Yuan, Y.; Raubal, M. Extracting dynamic urban mobility patterns from mobile phone data. In Geographic Information Science; Springer: Berlin/Heidelberg, Germany, 2012; pp. 354–367. [Google Scholar]
- Ratti, C.; Frenchman, D.; Pulselli, R.M.; Williams, S. Mobile landscapes: Using location data from cell phones for urban analysis. Environ. Plan. B Plan. Des. 2006, 33, 727–748. [Google Scholar] [CrossRef]
- Silva, T.H.; Vaz de Melo, P.O.; Almeida, J.M.; Salles, J.; Loureiro, A.A. A comparison of foursquare and instagram to the study of city dynamics and urban social behavior. In Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, Beijing, China, 12–16 August 2013.
- Gonzalez, M.C.; Hidalgo, C.A.; Barabasi, A.L. Understanding individual human mobility patterns. Nature 2008, 453, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Qu, Z.; Blumm, N.; Barabási, A.L. Limits of predictability in human mobility. Science 2010, 327, 1018–1021. [Google Scholar] [CrossRef] [PubMed]
- Caceres, N.; Wideberg, J.; Benitez, F. Deriving origin destination data from a mobile phone network. Intell. Transp. Syst. 2007, 1, 15–26. [Google Scholar] [CrossRef]
- Pelletier, M.P.; Trépanier, M.; Morency, C. Smart card data use in public transit: A literature review. Transp. Res. C Emerg. Technol. 2011, 19, 557–568. [Google Scholar] [CrossRef]
- Ranjan, G.; Zang, H.; Zhang, Z.L.; Bolot, J. Are call detail records biased for sampling human mobility? ACM SIGMOBILE Mob. Comput. Commun. Rev. 2012, 16, 33–44. [Google Scholar] [CrossRef]
- Zhao, Z.; Shaw, S.L.; Xu, Y.; Lu, F.; Chen, J.; Yin, L. Understanding the bias of call detail records in human mobility research. Int. J. Geogr. Inf. Sci. 2016, 30, 1–25. [Google Scholar] [CrossRef]
- Kwan, M.P. Analysis of human spatial behavior in a GIS environment: Recent developments and future prospects. J. Geogr. Syst. 2000, 2, 85–90. [Google Scholar] [CrossRef]
- Ahas, R.; Aasa, A.; Silm, S.; Aunap, R.; Kalle, H.; Mark, Ü. Mobile positioning in space-time behaviour studies: Social positioning method experiments in Estonia. Cartogr. Geogr. Inf. Sci. 2007, 34, 259–273. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Y. Pervasive location acquisition technologies: Opportunities and challenges for geospatial studies. Comput. Environ. Urban Syst. 2012, 36, 105–108. [Google Scholar] [CrossRef]
- Isaacman, S.; Becker, R.; Cáceres, R.; Kobourov, S.; Martonosi, M.; Rowland, J.; Varshavsky, A. Identifying important places in people’s lives from cellular network data. In Pervasive Computing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 133–151. [Google Scholar]
- Calabrese, F.; Di Lorenzo, G.; Liu, L.; Ratti, C. Estimating origin-destination flows using mobile phone location data. IEEE Pervasive Comput. 2011, 10, 36–44. [Google Scholar] [CrossRef]
- Exploring Universal Patterns in Human Home-Work Commuting from Mobile Phone Data. Available online: http://dx.doi.org/10.1371/journal.pone.0096180 (accessed on 12 September 2016).
- Bar, G.H. Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: A case study from Israel. Transp. Res. C Emerg. Technol. 2007, 15, 380–391. [Google Scholar]
- Calabrese, F.; Colonna, M.; Lovisolo, P.; Parata, D.; Ratti, C. Real-time urban monitoring using cell phones: A case study in Rome. IEEE Transp Intell. Transp. Syst. 2011, 12, 141–151. [Google Scholar] [CrossRef]
- Alhasoun, F.; Almaatouq, A.; Greco, K.; Campari, R.; Alfaris, A.; Ratti, C. The city browser: Utilizing massive call data to infer city mobility dynamics. In Proceedings of the 3rd International Workshop on Urban Computing, New York, NY, USA, 24 August 2014.
- Trasarti, R.; Olteanu-Raimond, A.M.; Nanni, M.; Couronné, T.; Furletti, B.; Giannotti, F.; Smoreda, Z.; Ziemlicki, C. Discovering urban and country dynamics from mobile phone data with spatial correlation patterns. Telecommun. Policy 2015, 39, 347–362. [Google Scholar] [CrossRef]
- Rubio, A.; Sanchez, A.; Frias-Martinez, E. Adaptive non-parametric identification of dense areas using cell phone records for urban analysis. Eng. Appl. Artif. Intell. 2013, 26, 551–563. [Google Scholar] [CrossRef]
- Hoteit, S.; Secci, S.; Sobolevsky, S.; Ratti, C.; Pujolle, G. Estimating human trajectories and hotspots through mobile phone data. Comput. Netw. 2014, 64, 296–307. [Google Scholar] [CrossRef]
- Sagl, G.; Delmelle, E.; Delmelle, E. Mapping collective human activity in an urban environment based on mobile phone data. Cartogr. Geogr. Inf. Sci. 2014, 41, 272–285. [Google Scholar] [CrossRef]
- Schlaich, J.; Otterstätter, T.; Friedrich, M. Generating trajectories from mobile phone data. In Proceedings of the 89th Annual Meeting Compendium of Papers, Transportation Research Board of the National Academies, Washington, DC, USA, 10–14 January 2010.
- Zhu, X.; Guo, D. Mapping large spatial flow data with hierarchical clustering. Transp. GIS 2014, 18, 421–435. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Xiao, Y.; Gao, S. Urban land uses and traffic ‘source-sink areas’: Evidence from GPS-enabled taxi data in Shanghai. Landsc. Urban Plan. 2012, 106, 73–87. [Google Scholar] [CrossRef]
- Ratti, C.; Sobolevsky, S.; Calabrese, F.; Andris, C.; Reades, J.; Martino, M.; Claxton, R.; Strogatz, S.H. Redrawing the map of great britain from a network of human interactions. PLoS ONE 2010, 5, e14248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.; Liu, Y.; Wang, Y.; Ma, X. Discovering spatial interaction communities from mobile phone data. Transp. GIS 2013, 17, 463–481. [Google Scholar] [CrossRef]
- Webster, F.V.; Bly, P.H.; Paulley, N.J. Urban land Use and Transport Interaction: Policies and Models; Gower Publishing: Brookfield, VT, USA, 1988. [Google Scholar]
- Wegener, M. Land-use transport interaction models. In Handbook of Regional Science; Springer: Berlin/Heidelberg, Germany, 2014; pp. 741–758. [Google Scholar]
- Toole, J.L.; Ulm, M.; González, M.C.; Bauer, D. Inferring land use from mobile phone activity. In Proceedings of the ACM SIGKDD International Workshop on Urban Computing, Beijing, China, 12–16 August 2012.
- Pei, T.; Sobolevsky, S.; Ratti, C.; Shaw, S.L.; Li, T.; Zhou, C. A new insight into land use classification based on aggregated mobile phone data. Int. J. Geogr. Inf. Sci. 2014, 28, 1988–2007. [Google Scholar] [CrossRef]
- Zhi, Y.; Li, H.; Wang, D.; Deng, M.; Wang, S.; Gao, J.; Duan, Z.; Liu, Y. Latent spatio-temporal activity structures: A new approach to inferring intra-urban functional regions via social media check-in data. Geo-Spat. Inf. Sci. 2016, 19, 94–105. [Google Scholar] [CrossRef]
- Yuan, J.; Zheng, Y.; Xie, X. Discovering regions of different functions in a city using human mobility and POIs. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012.
- Liu, X.; Kang, C.; Gong, L.; Liu, Y. Incorporating spatial interaction patterns in classifying and understanding urban land use. Int. J. Geogr. Inf. Sci. 2016, 30, 334–350. [Google Scholar] [CrossRef]
- Shenzhen Statistical Yearbook 2012. Available online: http://www.sztj.gov.cn/nj2012/indexeh.htm (accessed on 12 September 2016).
- The Comprehensive Plan of Shenzhen City (2010–2020). Available online: http://www.szpl.gov.cn/xxgk/csgh/csztgh/201009/t20100929_60694.htm (accessed on 12 September 2016).
- Hägerstraand, T. What about people in regional science? Pap. Reg. Sci. 1970, 24, 7–24. [Google Scholar] [CrossRef]
- Iovan, C.; Olteanu-Raimond, A.M.; Couronné, T.; Smoreda, Z. Moving and calling: Mobile phone data quality measurements and spatiotemporal uncertainty in human mobility studies. In Geographic Information Science at the Heart of Europe; Springer: Berlin/Heidelberg, Germany, 2013; pp. 247–265. [Google Scholar]
- Vajakas, T.; Vajakas, J.; Lillemets, R. Trajectory reconstruction from mobile positioning data using cell-to-cell travel time information. Int. J. Geogr. Inf. Sci. 2015, 29, 1941–1954. [Google Scholar] [CrossRef]
- Kang, C.; Liu, Y.; Ma, X.; Wu, L. Towards estimating urban population distributions from mobile call data. J. Urban Technol. 2012, 19, 3–21. [Google Scholar] [CrossRef]
- Pelleg, D.; Moore, A.W. X-means: Extending k-means with efficient estimation of the number of clusters. In Proceedings of the Seventeenth International Conference on Machine Learnings, Stanford, CA, USA, 19 June–2 July 2000.
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The weka data mining software: An update. ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [Google Scholar] [CrossRef]
- Gao, S. Spatio-temporal analytics for exploring human mobility patterns and urban dynamics in the mobile age. Spat. Cogn. Comput. 2015, 15, 86–114. [Google Scholar] [CrossRef]
- Sagl, G.; Loidl, M.; Beinat, E. A visual analytics approach for extracting spatio-temporal urban mobility information from mobile network traffic. ISPRS Int. J. Geo-Inf. 2012, 1, 256–271. [Google Scholar] [CrossRef]
- Xu, Y.; Shaw, S.-L.; Zhao, Z.; Yin, L.; Fang, Z.; Li, Q. Understanding aggregate human mobility patterns using passive mobile phone location data: A home-based approach. Transportation 2015, 42, 625–646. [Google Scholar] [CrossRef]
- Lu, B.; Huang, M. Traffic flow prediction based on wavelet analysis, genetic algorithm and artificial neural network. In Proceedings of the International Conference on Information Engineering and Computer Science, Wuhan, China, 25–26 December 2010.
- Necula, E. Dynamic traffic flow prediction based on GPS data. In Proceedings of the IEEE International Conference on TOOLS with Artificial Intelligence, Limassol, Cyprus, 10–12 November 2014.
- Xu, Y.; Shaw, S.-L.; Fang, Z.; Yin, L. Estimating potential demand of bicycle trips from mobile phone data—An anchor-point based approach. ISPRS Int. J. Geo-Inf. 2016, 5, 131. [Google Scholar] [CrossRef]
- Demissie, M.G.; Phithakkitnukoon, S.; Sukhvibul, T.; Antunes, F. Inferring passenger travel demand to improve urban mobility in developing countries using cell phone data: A case study of Senegal. IEEE Transp. Intell. Trans. Syst. 2016, 17, 2466–2478. [Google Scholar] [CrossRef]
- Garau, C.; Masala, F.; Pinna, F. Benchmarking Smart Urban Mobility: A Study on Italian Cities; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Garau, C.; Masala, F.; Pinna, F. Cagliari and smart urban mobility: Analysis and comparison. Cities 2016, 56, 35–46. [Google Scholar] [CrossRef]
User ID | Record Time | Longitude | Latitude |
---|---|---|---|
8d5b2b5****** | 00:25:36 | 113.*** | 22.*** |
8d5b2b5****** | 01:26:40 | 113.*** | 22.*** |
8d5b2b5****** | 02:20:53 | 113.*** | 22.*** |
8d5b2b5****** | … | … | … |
8d5b2b5****** | 23:33:50 | 113.*** | 22.*** |
Class | Classification | Level (l) | Status | Class | Classification | Level (l) | Status |
---|---|---|---|---|---|---|---|
1 | −4 | Divergence | 6 | 0 | No | ||
2 | −3 | Divergence | 7 | 1 | Convergence | ||
3 | −2 | Divergence | 8 | 2 | Convergence | ||
4 | −1 | Divergence | 9 | 3 | Convergence | ||
5 | 0 | No | 10 | 4 | Convergence |
GridID | 1 | 2 | 3 | 4 | 5 | 6 | 7 | …… | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
211 | 2 | 1 | 1 | 0 | 1 | 2 | 4 | …… | −3 | −4 | −2 | −3 | −1 | −1 | 1 |
1056 | −1 | 0 | 0 | 0 | 1 | −3 | −3 | …… | 2 | 3 | 3 | 2 | 1 | 1 | 1 |
⋮ | ⋮ | ||||||||||||||
2135 | 1 | 1 | 0 | 0 | 1 | 2 | 2 | …… | −2 | −3 | 2 | −3 | −2 | −1 | 1 |
Clusters | Com | Ind | Res | Tra | Adm | Edu | Tou | Spo | Wat | Oth |
---|---|---|---|---|---|---|---|---|---|---|
C1 | 0.3 | 31.3 | 30.3 | 15.2 | 0.2 | 0.3 | 8.0 | 1.3 | 0.5 | 12.6 |
C2 | 11.6 | 36.3 | 29.4 | 12.5 | 1.1 | 0.7 | 3.3 | 2.0 | 0.3 | 2.8 |
C3 | 0.6 | 32.0 | 50.4 | 6.6 | 0.0 | 0.7 | 3.0 | 0.4 | 0.0 | 6.3 |
C4 | 1.6 | 12.5 | 67.6 | 8.8 | 0.1 | 0.2 | 6.4 | 0.2 | 0.1 | 2.5 |
C5 | 3.4 | 31.1 | 40.1 | 12.5 | 0.3 | 1.0 | 4.4 | 0.8 | 0.1 | 6.3 |
C6 | 1.7 | 28.8 | 27.9 | 8.5 | 0.4 | 1.5 | 9.5 | 2.7 | 0.4 | 18.6 |
C7 | 2.4 | 58.4 | 11.8 | 9.8 | 0.6 | 1.7 | 3.5 | 1.6 | 0.0 | 10.2 |
C8 | 1.7 | 41.7 | 16.5 | 18.4 | 1.7 | 1.1 | 7.6 | 1.8 | 0.1 | 9.4 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Fang, Z.; Xu, Y.; Shaw, S.-L.; Zhao, Z.; Yin, L.; Zhang, T.; Lin, Y. Understanding Spatiotemporal Patterns of Human Convergence and Divergence Using Mobile Phone Location Data. ISPRS Int. J. Geo-Inf. 2016, 5, 177. https://doi.org/10.3390/ijgi5100177
Yang X, Fang Z, Xu Y, Shaw S-L, Zhao Z, Yin L, Zhang T, Lin Y. Understanding Spatiotemporal Patterns of Human Convergence and Divergence Using Mobile Phone Location Data. ISPRS International Journal of Geo-Information. 2016; 5(10):177. https://doi.org/10.3390/ijgi5100177
Chicago/Turabian StyleYang, Xiping, Zhixiang Fang, Yang Xu, Shih-Lung Shaw, Zhiyuan Zhao, Ling Yin, Tao Zhang, and Yunong Lin. 2016. "Understanding Spatiotemporal Patterns of Human Convergence and Divergence Using Mobile Phone Location Data" ISPRS International Journal of Geo-Information 5, no. 10: 177. https://doi.org/10.3390/ijgi5100177
APA StyleYang, X., Fang, Z., Xu, Y., Shaw, S. -L., Zhao, Z., Yin, L., Zhang, T., & Lin, Y. (2016). Understanding Spatiotemporal Patterns of Human Convergence and Divergence Using Mobile Phone Location Data. ISPRS International Journal of Geo-Information, 5(10), 177. https://doi.org/10.3390/ijgi5100177