Simulation and Evaluation of Urban Growth for Germany Including Climate Change Mitigation and Adaptation Measures
Abstract
:1. Introduction
2. Methods and Data
2.1. Modelling Land Use Change
- the ability to simulate urban and non-urban land use types;
- to integrate regional demands for land use for sub-regions of a study area; and
- to simulate a large country like Germany with high spatial resolution.
2.2. The Land Use Scanner Model
- A spatial resolution of 100 m.
- 13 land-use classes (6 urban land-use classes). In general, any number of land-use classes can be implemented in Land Use Scanner.
- A discrete modeling algorithm, where a raster cell represents only one land-use class (see [22]).
- By using the same parameters, the model results are reproducible.
- Planning regulations are included in the simulation.
- The model gives results in subsequent time steps (five year steps).
- the amount of land allocated to a cell cannot be negative;
- in total, only 1 ha can be allocated to a cell; and
- the total amount of land allocated to a specific land-use type in a region should be between the minimum and maximum claim for that region.
- Xcj ≥ 0 for each c and j;
- = 1 for each c;
- Ljr ≤ ≤ Hjr for each j and r for which claims are specified;
- Xcj is the amount of land allocated to cell c to be used for land-use type j;
- Scj is the suitability of cell c for land-use type j;
- Ljr is the minimum claim for land-use type j in region r; and
2.3. Land Use Change Scenarios
2.3.1. Preserving and Developing Urban Green Areas
- securing existing inner-urban green and recreational areas as well as appropriate open space and green space planning in new built-up areas;
- developing new urban green areas;
- preserving regionally important open space functions as well as green and blue structures; and
- demolishing and concentrating urban structures as well as renaturation.
2.3.2. Strengthening Inner-Urban Development
2.3.3. Enhanced Flood Protection
2.4. Impact Assessment of Measures with Indicators
2.4.1. Increasing Built-Up and Transport Areas
- Xcu is the amount of land allocated to cell c to be used for urban land-use type u;
- LCr,01 is the daily land consumption within a period of n years for all regions r; and
- LCr,02 is the share of new built-up and transport area of region r.
2.4.2. Increasing Built-Up and Transport Area in Flood Prone Areas
2.4.3. Increasing Built-Up and Transport Area in Areas with Thermal Heat Load
- Proportion of land consumption for built-up areas in areas with thermal heat load.
- Share of built-up areas on municipal areas in 2030 (residential development) within a distance of 500 m to green and blue structures (urban green and recreational areas, forests, wetlands, water).
3. Results
3.1. Indicator Increasing Built-Up and Transport Area
3.2. Indicator Increasing Built-Up and Transport Area in Flood Prone Areas
3.3. Indicator Increasing Built-Up and Transport Area in Areas with Thermal Heat Load
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United Nations. World Urbanization Prospects: The 2014 Revision: Highlights; United Nations: New York, NY, USA, 2014.
- United Nations Environment Programme (UNEP). Global Environment Outlook GEO 5: Environment for the Future We Want; UNEP: Nairobi, Kenya, 2012.
- Haase, D.; Nuissl, H. Assessing the impacts of land use change on transforming regions. J. Land Use Sci. 2010, 5, 67–72. [Google Scholar] [CrossRef]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.T.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B.; et al. Future extreme events in European climate: An exploration of regional climate model projections. Clim. Chang. 2007, 81, 71–95. [Google Scholar] [CrossRef]
- Elmer, F.; Hoymann, J.; Düthmann, D.; Vorogushyn, S.; Kreibich, H. Drivers of flood risk change in residential areas. Nat. Hazards Earth Syst. Sci. 2012, 12, 1641–1657. [Google Scholar] [CrossRef]
- Verburg, P.H.; van Ritsema Eck, J.; de Nijs, T.; Dijst, M.J.; Schot, P. Determinants of land-use change patterns in the Netherlands. Environ. Plan. B Plan. Des. 2004, 31, 125–150. [Google Scholar] [CrossRef]
- Barredo, J.I.; Engelen, G. Land use scenario modeling for flood risk mitigation. Sustainability 2010, 2, 1327–1344. [Google Scholar] [CrossRef]
- Hooijer, A.; Klijn, F.; Pedroli, G.B.M.; van Os, A.G. Towards sustainable flood risk management in the Rhine and Meuse river basins: Synopsis of the findings of IRMA-SPONGE. River Res. Appl. 2004, 20, 343–357. [Google Scholar] [CrossRef]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Tayyebi, A.; Darrel Jenerette, G. Increases in the climate change adaption effectiveness and availability of vegetation across a coastal to desert climate gradient in metropolitan Los Angeles, CA, USA. Sci. Total Environ. 2016, 548–549, 60–71. [Google Scholar] [CrossRef] [PubMed]
- BenDor, T.; Westervelt, J.; Song, Y.; Sexton, J.O. Modeling park development through regional land use change simulation. Land Use Policy 2013, 30, 1–12. [Google Scholar] [CrossRef]
- The Federal Government. German Strategy for Adaptation to Climate Change adopted by the German Federal Cabinet on 17th December 2008. Available online: http://www.bmub.bund.de/fileadmin/bmu-import/files/english/pdf/application/pdf/das_gesamt_en_bf.pdf (accessed on 19 April 2016).
- The Federal Government. Perspectives for Germany—Our Strategy for Sustainable Development. 2002. Available online: https://www.bundesregierung.de/Content/EN/StatischeSeiten/Schwerpunkte/Nachhaltigkeit/Anlagen/perspektives-for-germany-langfassung.pdf;jsessionid=72A57864121F101C9037C14D9FB40EBB.s2t1?__blob=publicationFile&v=1 (accessed on 19 April 2016).
- Kufeld, W. Klimawandel und Nutzung von Regenerativen Energien als Herausforderungen für Die Raumordnung; Academy for Spatial Research and Planning (ARL): Hannover, Germany, 2013. [Google Scholar]
- Federal Environmental Protection Agency (UBA). Submission under the United Nations Framework Convention on Climate Change and the Kyoto Protocol 2014—National Inventory Report for the German Greenhouse Gas Inventory 1990–2012; Uederal Environmental Protection Agency (UBA): Dessau-Roßlau, Germany, 2014.
- Federal Statistical Office. Bodenfläche nach Art der Tatsächlichen Nutzung; Federal Statistical Office: Wiesbaden, Germany, 2015. [Google Scholar]
- Bart, I.L. Urban sprawl and climate change: A statistical exploration of cause and effect, with policy options for the EU. Land Use Policy 2010, 27, 283–292. [Google Scholar] [CrossRef]
- Verburg, P.H.; Koomen, E.; Hilferink, M.; Pérez-Soba, M.; Lesschen, J.P. An assessment of the impact of climate adaptation measures to reduce flood risk on ecosystem services. Landsc. Ecol. 2012, 27, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Briassoulis, H. Analysis of Land Use Change: Theoretical and Modeling Approaches. 2000. Available online: http://www.rri.wvu.edu/WebBook/Briassoulis/contents.htm (accessed on 15 July 2013).
- Verburg, P.H.; Schot, P.; Dijst, M.J.; Veldkamp, A.T. Land use change modelling: Current practice and research priorities. GeoJournal 2004, 61, 309–324. [Google Scholar] [CrossRef]
- Koomen, E.; Stillwell, J. Modelling land-use change: Theories and methods. In Modelling Land-Use Change. Progress and Application; Koomen, E., Stillwell, J., Bakema, A., Scholten, H., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 1–21. [Google Scholar]
- Koomen, E.; Hilferink, M.; Borsboom-van Beurden, J. Introducing land use scanner. In Land-Use Modelling in Planning Practice; Koomen, E., Ed.; Springer: Dordrecht, The Netherlands, 2011; Volume 101, pp. 3–21. [Google Scholar]
- Verburg, P.H.; Overmars, K.P. Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc. Ecol. 2009, 24, 1167–1181. [Google Scholar] [CrossRef]
- Lavalle, C.; Baranzelli, C.; Batista e Silva, F.; Mubareka, S.; Rocha Gomes, C.; Koomen, E.; Hilferink, M. A high resolution land use/cover modelling framework for Europe: Introducing the EU-ClueScanner100 model. In Computational Science and Its Applications—ICCSA 2011; Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O., Eds.; Springer: Berlin, Germany, 2011; Volume 6782, pp. 60–75. [Google Scholar]
- Engelen, G.; White, R.; de Nijs, T. Environment explorer: Spatial support system for the integrated assessment of socio-economic and environmental policies in the Netherlands. Integr. Assess. 2003, 4, 97–105. [Google Scholar] [CrossRef]
- Hilferink, M.; Rietveld, P. LAND use scanner: An integrated GIS based model for long term projections of land use in urban and rural areas. J. Geogr. Inf. Syst. 1999, 1, 155–177. [Google Scholar] [CrossRef]
- Goetzke, R.; Hoymann, J. A land use scenario 2030 for Germany. In Simulating Land-Use Change; Koch, A., Mandl, P., Eds.; Lit-Verlag: Berlin, Germany, in press.
- Arnold, S. Integration of remote sensing data in national and European spatial data infrastructures—Derivation of CORINE Land Cover data from the DLM-DE. Photogramm. Fernerkund. Geoinform. 2009, 2009, 129–141. [Google Scholar] [CrossRef] [PubMed]
- BMVBS (The Federal Ministry of Transport, Building and Urban Development); BBR (Federal Office for Building and Regional Planning). Climate Friendly Urban Development in Practice—Results of the Exploratory Focus StadtKlimaExWoSt. Final Conference on 9th and 10th October 2012. Available online: http://www.bbsr.bund.de/BBSR/EN/RP/ExWoSt/FieldsOfResearch/UrbanStrategiesandPotentialClimateChange/DL_Conference2012Documentation.pdf?__blob=publicationFile&v=2 (accessed on 30 May 2016).
- Arnold, C.L.; Gibbons, C.J. Impervious surface coverage: The emergence of a key environmental indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Rittel, K.; Bredow, L.; Wanka, E.R.; Hokema, D.; Schuppe, G.; Wilke, T.; Nowak, D.; Heiland, S. Green, Natural, Healthy: The Potential of Multifunctional Urban Spaces: R&D Project (FKZ 3511 82 0800). BfN (Federal Agency for Nature Conservation), BfN-Skripten 371: Bonn-Bad Godesberg, 2014; Available online: https://www.bfn.de/fileadmin/BfN/service/Dokumente/skripten/Skript371_EN_barrierefrei.pdf (accessed on 30 May 2016).
- BMVBS (The Federal Ministry of Transport, Building and Urban Development). Stadtumbau vor neuen Herausforderungen: 4. Statusbericht der Bundestransferstelle Stadtumbau Ost; The Federal Ministry of Transport, Building and Urban Development (BMVBS): Berlin, Germany, 2012. [Google Scholar]
- BBSR (Federal Institute for Research on Building, Urban Affairs and Spatial Development). Aktuelle und zukünftige Entwicklung von Wohnungsleerständen in den Teilräumen Deutschlands: Datengrundlagen, Erfassungsmethoden und Abschätzungen; English Executive Summary; BBSR: Bonn, Geramny, 2014. [Google Scholar]
- Dodman, D. Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environ. Urban. 2009, 21, 185–201. [Google Scholar] [CrossRef]
- BBSR (Federal Institute for Research on Building, Urban Affairs and Spatial Development). Innenentwicklungspotenziale in Deutschland: Ergebnisse einer bundesweiten Umfrage und Möglichkeiten einer automatisierten Abschätzung; English Executive Summary; BBSR: Bonn, Geramny, 2013. [Google Scholar]
- Van den Bergh, J.; Verbruggen, H. Spatial sustainability, trade and indicators: An evaluation of the “ecological footprint”. Ecol. Econ. 1999, 29, 61–72. [Google Scholar] [CrossRef]
- Giljum, S.; Burger, E.; Hinterberger, F.; Lutter, S.; Bruckner, M. A comprehensive set of resource use indicators from the micro to the macro level. Resour. Conserv. Recycl. 2011, 55, 300–308. [Google Scholar] [CrossRef]
- Lung, T.; Lavalle, C.; Hiederer, R.; Dosio, A.; Bouwer, L.M. A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change. Glob. Environ. Chang. 2013, 23, 522–536. [Google Scholar] [CrossRef]
- Siedentop, S.; Weis, M.; Fina, S.; Zakrzewski, P.; Gornig, M.; Neumann, I. Integrierte Szenarien der Raumentwicklung in Deutschland: Ergebnisse eines Ressortforschungsprojektes im Auftrag des Bundesministeriums für Verkehr, Bau und Stadtentwicklung (BMVBS) und des Bundesinstituts für Bau-, Stadt und Raumforschung (BBSR); Politikberatung Kompakt 60: Berlin, Germany, 2011. [Google Scholar]
- BMVBS (The Federal Ministry of Transport, Building and Urban Development); BBR (Federal Office for Building and Regional Planning). Nachhaltigkeitsbarometer Fläche: Regionale Schlüsselindikatoren nachhaltiger Flächennutzung für die Fortschrittsberichte der nationalen Nachhaltigkeitsstrategie; ein Projekt des Forschungsprogramms “Allgemeine Ressortforschung“ des Bundesministeriums für Verkehr, Bau und Stadtentwicklung (BMVBS) und des Bundesamtes für Bauwesen und Raumordnung (BBR); The Federal Ministry of Transport, Building and Urban Development/Federal Office for Building and Regional Planning (BMVBS/BBR): Berlin/Bonn, Germany, 2007. [Google Scholar]
Land Use Strategies | Indicators | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Climate Change Mitigation | Climate Change Adaptation | Nature Protection | Increasing Built-Up and Transport Areas | Access to New Built-Up Areas | Locational Integration of New Built-Up Areas | Changing Carbon Storage in Land Use and Soils | Increasing Built-Up and Transport in Flood-Prone Areas | Increasing Built-Up and Transport in Areas with Thermal Heat Load | Greening Settlement Areas | Soil Sealing | Increasing Built-Up and Transport in Areas Designated for Nature and Landscape Protection | Increasing Built-Up and Transport in Unfragmented Space | ||
Measures | Preserving and developing urban green areas | x | xx | x | x | x | xx | xx | xx | x | ||||
Strengthening inner-urban development | xx | x | x | x | xx | x | x | x | x | x | ||||
Realizing higher densities in new built-up areas | xx | x | x | x | x | x | x | x | ||||||
Strengthening public transport | xx | x | xx | xx | x | x | ||||||||
Reducing land take by transport infrastructure | xx | x | x | x | x | x | x | |||||||
Settlement retreat, recentralization | xx | xx | xx | x | x | x | x | x | x | x | x | x | x | |
Designating more priority and preserved areas in regional planning | xx | xx | xx | xx | x | x | x | |||||||
Enhanced flood protection | xx | xx | ||||||||||||
Restrictive open space and nature protection | x | xx | x | xx | xx | |||||||||
Energy production on non-agricultural areas unsuitable for settlement purposes | xx | x | ||||||||||||
Land use strategies | Climate protection | x | x | x | x | |||||||||
Climate change adaptation | x | x | x | x | ||||||||||
Nature protection | x | x |
Population Development | Population Development 1/1/2009 to 31/12/2011 | IUD/Inhabitant (m2) |
---|---|---|
Strongly growing | at least 1.5% p.a. | approx. 8 m2 |
Growing | 0.25% up to below 1.5% p.a. | approx. 12 m2 |
Stagnating | −0.25% up to below 0.25% p.a. | approx. 13 m2 |
Shrinking | −1.5% up to below −0.25% p.a. | approx. 17 m2 |
Strongly shrinking | more than −1.5% p.a. | approx. 38 m2 |
Classification | Index Values |
---|---|
Well below average | 0–50 |
Below average | 50–100 |
Above average | 100–150 |
Well above average | 150–200 |
Built-Up and Transport Area | |||||
---|---|---|---|---|---|
Buildings and Open Space | Transport Areas | Recreational Areas Incl. Cemeteries | Operational Areas Excl. Mining | Total Land Consumption | |
Reference scenario | 19.5 | 15.5 | 9 | 1 | 45 |
Preserving and developing urban green areas | 17.7 | 15.3 | 13 | 1 | 47 |
Strengthening inner-urban development | 6.6 | 13.9 | 8.5 | 1 | 30 |
Enhanced flood protection | 19.5 | 15.5 | 9 | 1 | 45 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoymann, J.; Goetzke, R. Simulation and Evaluation of Urban Growth for Germany Including Climate Change Mitigation and Adaptation Measures. ISPRS Int. J. Geo-Inf. 2016, 5, 101. https://doi.org/10.3390/ijgi5070101
Hoymann J, Goetzke R. Simulation and Evaluation of Urban Growth for Germany Including Climate Change Mitigation and Adaptation Measures. ISPRS International Journal of Geo-Information. 2016; 5(7):101. https://doi.org/10.3390/ijgi5070101
Chicago/Turabian StyleHoymann, Jana, and Roland Goetzke. 2016. "Simulation and Evaluation of Urban Growth for Germany Including Climate Change Mitigation and Adaptation Measures" ISPRS International Journal of Geo-Information 5, no. 7: 101. https://doi.org/10.3390/ijgi5070101
APA StyleHoymann, J., & Goetzke, R. (2016). Simulation and Evaluation of Urban Growth for Germany Including Climate Change Mitigation and Adaptation Measures. ISPRS International Journal of Geo-Information, 5(7), 101. https://doi.org/10.3390/ijgi5070101