Virtual Geographic Simulation of Light Distribution within Three-Dimensional Plant Canopy Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of Loquat Canopy Structural Parameters
2.2. Three-Dimensional Muluo Loquat Canopy Model Generation
2.3. Radiosity-Based Simulation of the PAR Distribution within a Canopy
2.3.1. Equation for Radiosity
2.3.2. Incorporation of Radiosity into a Three-Dimensional Model
2.3.3. Definition of the Light Source
2.3.4. Computation of Form Factors
2.3.5. Solving the Radiosity Equation
2.4. Alternative Methods for Simulating the PAR Distribution within a Canopy
3. Results and Discussion
3.1. Spatial Distribution of Direct Solar PAR in the Canopy
3.2. Spatial Distribution of Diffuse PAR within the Canopy
3.3. Light Interception Efficiency
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Neuenschwander, N.; Hayek, U.W.; Grêt-Regamey, A. Integrating an urban green space typology into procedural 3D visualization for collaborative planning. Comput. Environ. Urban Syst. 2014, 48, 99–110. [Google Scholar] [CrossRef]
- Lin, H.; Chen, M.; Lu, G.; Zhu, Q.; Gong, J.; You, X.; Wen, Y.; Xu, B.; Hu, M. Virtual geographic environments (vges): A new generation of geographic analysis tool. Earth-Sci. Rev. 2013, 126, 74–84. [Google Scholar] [CrossRef]
- Davis, J.P.; Eisenhardt, K.M.; Bingham, C.B. Developing theory through simulation methods. Acad. Manag. Rev. 2007, 32, 480–499. [Google Scholar] [CrossRef]
- Chen, M.; Lin, H.; Kolditz, O.; Chen, C. Developing dynamic virtual geographic environments (vges) for geographic research. Environ. Earth Sci. 2015, 74, 6975–6980. [Google Scholar] [CrossRef]
- Liang, J.; Gong, J.; Zhou, J.; Ibrahim, A.N.; Li, M. An open-source 3D solar radiation model integrated with a 3D geographic information system. Environ. Model. Softw. 2015, 64, 94–101. [Google Scholar] [CrossRef]
- Lin, H.; Lu, G. Virtual geographic environment: A workspace for computer-aided geographic experiments. Ann. Assoc. Am. Geogr. 2013, 103, 465–482. [Google Scholar] [CrossRef]
- Da Silva, D.; Han, L.; Costes, E. Light interception efficiency of apple trees: A multiscale computational study based on mapplet. Ecol. Model. 2014, 290, 45–53. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Yun, F.L. Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon’s micro-climate and thermal comfort. Build. Environ. 2016, 103, 262–275. [Google Scholar] [CrossRef]
- Hwang, W.H.; Wiseman, P.E.; Thomas, V.A. Enhancing the energy conservation benefits of shade trees in dense residential developments using an alternative tree placement strategy. Landsc. Urban Plan. 2017, 158, 62–74. [Google Scholar] [CrossRef]
- Louarn, G.; Da Silva, D.; Godin, C.; Combes, D. Simple envelope-based reconstruction methods can infer light partitioning among individual plants in sparse and dense herbaceous canopies. Agric. For. Meteorol. 2012, 166, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Goral, C.M.; Torrance, K.E.; Greenberg, D.P.; Battaile, B. Modeling the Interaction of Light Between Diffuse Surfaces; ACM SIGGRAPH Computer Graphics; ACM: New York, NY, USA, 1984; pp. 213–222. [Google Scholar]
- Ross, J.K.; Marshak, A. Calculation of canopy bidirectional reflectance using the Monte Carlo method. Remote Sens. Environ. 1988, 24, 213–225. [Google Scholar] [CrossRef]
- Myneni, R.B. Modeling radiative transfer and photosynthesis in three-dimensional vegetation canopies. Agric. For. Meteorol. 1991, 55, 323–344. [Google Scholar] [CrossRef]
- Widlowski, J.-L.; Côté, J.-F.; Béland, M. Abstract tree crowns in 3D radiative transfer models: Impact on simulated open-canopy reflectances. Remote Sens. Environ. 2014, 142, 155–175. [Google Scholar] [CrossRef]
- Annandale, J.; Jovanovic, N.; Campbell, G.; Du Sautoy, N.; Lobit, P. Two-dimensional solar radiation interception model for hedgerow fruit trees. Agric. For. Meteorol. 2004, 121, 207–225. [Google Scholar] [CrossRef]
- Kolmanič, S.; Guid, N.; Diaci, J. Forestmas—A single tree based secondary succession model employing ellenberg indicator values. Ecol. Model. 2014, 279, 100–113. [Google Scholar] [CrossRef]
- Iio, A.; Kakubari, Y.; Mizunaga, H. A three-dimensional light transfer model based on the vertical point-quadrant method and monte-carlo simulation in a fagus crenata forest canopy on mount naeba in japan. Agric. For. Meteorol. 2011, 151, 461–479. [Google Scholar] [CrossRef]
- Huang, H.; Qin, W.; Liu, Q. Rapid: A radiosity applicable to porous individual objects for directional reflectance over complex vegetated scenes. Remote Sens. Environ. 2013, 132, 221–237. [Google Scholar] [CrossRef]
- Vos, J.; Evers, J.B.; Buck-Sorlin, G.; Andrieu, B.; Chelle, M.; De Visser, P.H. Functional–structural plant modelling: A new versatile tool in crop science. J. Exp. Bot. 2010, 61, 2101–2115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barillot, R.; Louarn, G.; Escobar-Gutiérrez, A.J.; Huynh, P.; Combes, D. How good is the turbid medium-based approach for accounting for light partitioning in contrasted grass–legume intercropping systems? Ann. Bot. 2011, 108, 1013–1024. [Google Scholar] [CrossRef] [PubMed]
- Chelle, M.; Andrieu, B. The nested radiosity model for the distribution of light within plant canopies. Ecol. Model. 1998, 111, 75–91. [Google Scholar] [CrossRef]
- Prusinkiewicz, A.L.P.; Lindenmayer, A.; Hanan, J.S.; Fracchia, F.D.; Fowler, D. The Algorithmic Beauty of Plant; Springer: New York, NY, USA, 1990. [Google Scholar]
- De Reffye, P.; Edelin, C.; Françon, J.; Jaeger, M.; Puech, C. Plant models faithful to botanical structure and development. ACM SIGGRAPG Comput. Graph. 1988, 22, 151–158. [Google Scholar] [CrossRef]
- Lintermann, B.; Deussen, O. Interactive modeling of plants. IEEE Comput. Graph. Appl. 1999, 19, 56–65. [Google Scholar] [CrossRef]
- Lin, D.; Chen, C.; Tang, L.; Zou, J.; Wang, Q. Interactive pruning operation on virtual tree base on color encoding. J. Comput. Aided Des. Comput. Graph. 2011, 11, 1799–1807. [Google Scholar]
- Tang, L.; Chen, C.; Huang, H.; Lin, D. An integrated system for 3D tree modeling and growth simulation. Environ. Earth Sci. 2015, 74, 7015–7028. [Google Scholar] [CrossRef]
- Quan, L.; Tan, P.; Zeng, G.; Yuan, L.; Wang, J.; Kang, S.B. Image-Based Plant Modeling; ACM Transactions on Graphics (TOG); ACM: New York, NY, USA, 2006; pp. 599–604. [Google Scholar]
- Sonohat, G.; Sinoquet, H.; Kulandaivelu, V.; Combes, D.; Lescourret, F. Three-dimensional reconstruction of partially 3D-digitized peach tree canopies. Tree Physiol. 2006, 26, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, H.; Dai, M.; Ma, W.; Quan, L. Data-driven synthetic modeling of trees. IEEE Trans. Vis. Comput. Graph. 2014, 20, 1214–1226. [Google Scholar] [CrossRef] [PubMed]
- Borel, C.C.; Gerstl, S.A.; Powers, B.J. The radiosity method in optical remote sensing of structured 3-D surfaces. Remote Sens. Environ. 1991, 36, 13–44. [Google Scholar] [CrossRef]
- Soler, C.; Sillion, F.X.; Blaise, F.; Dereffye, P. An efficient instantiation algorithm for simulating radiant energy transfer in plant models. ACM Trans. Graph. (TOG) 2003, 22, 204–233. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Gerstl, S.A. 3-D scene modeling of semidesert vegetation cover and its radiation regime. Remote Sens. Environ. 2000, 74, 145–162. [Google Scholar] [CrossRef]
- Pradal, C.; Dufour-Kowalski, S.; Boudon, F.; Fournier, C.; Godin, C. Openalea: A visual programming and component-based software platform for plant modelling. Funct. Plant Biol. 2008, 35, 751–760. [Google Scholar] [CrossRef]
- Myneni, R.B.; Ross, J.; Asrar, G. A review on the theory of photon transport in leaf canopies. Agric. For. Meteorol. 1989, 45, 1–153. [Google Scholar] [CrossRef]
- Zou, J.; Lin, Y.; Chen, C.; Tang, L. Modelling the 3D distribution of photosynthetically active radiation of direct solar radiation based on virtual plant canopy. J. Fuzhou Univ. 2011, 39, 838–844. [Google Scholar]
- Tang, L.; Hou, C.; Huang, H.; Chen, C.; Zou, J.; Lin, D. Light interception efficiency analysis based on three-dimensional peach canopy models. Ecol. Inform. 2015, 30, 60–67. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Y.; Li, B.; Ma, Y. Modelling the three dimensional distribution of direct solar radiation in maize canopy. Acta Ecol. Sin. 2005, 25, 7–12. [Google Scholar]
- Ma, Y.; Wen, M.; Li, B.; Wang, X.; Guo, Y. Efficient model for computing the distribution of direct solar radiation in maize canopy at organ level. Trans. CSAE 2007, 23, 151–155. [Google Scholar]
- Tang, L.; Chen, C.; Zou, J.; Lin, Y.; Lin, D.; Li, J. Ontoplant: An integrated virtual plant software package for different scale applications. In Proceedings of the 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services (ICSDM), Fuzhou, China, 29 June–1 July 2011; pp. 308–314. [Google Scholar]
- Ashdown, I. Radiosity: A Programmer’s Perspective; John Wiley & Sons, Inc.: New York, NY, USA, 1994. [Google Scholar]
- Wang, B. Calculation of astronomical parameters in solar energy. Sol. Energy 1999, 20, 8–10. [Google Scholar]
- Liu, B.Y.; Jordan, R.C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol. energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Cohen, M.F.; Greenberg, D.P. The Hemi-Cube: A Radiosity Solution for Complex Environments. In SIGGRAPH ’85 Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques; ACM: New York, NY, USA, 1985; pp. 31–40. [Google Scholar]
- Cohen, M.F.; Chen, S.E.; Wallace, J.R.; Greenberg, D.P. A Progressive Refinement Approach to Fast Radiosity Image Generation; ACM SIGGRAPH Computer Graphics; ACM: New York, NY, USA, 1988; pp. 75–84. [Google Scholar]
- Dulk, J.A.D. The Interpretation of Remote Sensing, a Feasibility Study. Ph.D. Thesis, Wageningen University & Research, Wageningen, The Netherlands, April 1989. [Google Scholar]
- Gao, Z.; Feng, S.; Zhang, X.C.; Cheng, J.J. The simulation of leaf net photosynthtic rates in different radiation in apple canopy. Acta Ecol. Sin. 2012, 32, 1037–1044. [Google Scholar]
Shoot Class | Length (m) | Thickness (m) | Number of Shoots | Angle (°) |
---|---|---|---|---|
Central shoot | 0.85–1.06 | 0.11–0.12 | 4–6 | 30–45 |
Lateral shoot | 0.51–0.90 | 0.09 | 2–3 | 30–60 |
Time | Intensity of PAR (μmol·m−2·s−1) | PAR Captured Per Second by the Whole Canopy (μmol·s−1) | ||
---|---|---|---|---|
Radiosity | Ray Tracing | Radiosity | Ray Tracing | |
06:00 | 22.04 | 20.89 | 370.31 | 350.96 |
07:00 | 95.14 | 83.36 | 1598.60 | 1400.67 |
08:00 | 178.46 | 161.54 | 2998.72 | 2714.37 |
09:00 | 272.48 | 250.76 | 4578.52 | 4213.66 |
10:00 | 345.49 | 325.04 | 5805.43 | 5461.77 |
11:00 | 401.50 | 379.03 | 6746.55 | 6369.01 |
12:00 | 425.74 | 401.04 | 7153.88 | 6738.92 |
13:00 | 403.34 | 382.07 | 6777.48 | 6420.11 |
14:00 | 350.84 | 333.22 | 5895.21 | 5599.30 |
15:00 | 278.55 | 261.22 | 4680.57 | 4389.39 |
16:00 | 192.25 | 178.34 | 3230.46 | 2996.72 |
17:00 | 114.01 | 96.91 | 1915.80 | 1628.49 |
18:00 | 31.43 | 29.32 | 528.20 | 492.59 |
mean | 239.33 | 223.29 | 4021.52 | 3752.00 |
Time | Intensity of PAR (μmol·m−2·s−1) | PAR Captured Per Second by the Whole Canopy (μmol·s−1) | ||
---|---|---|---|---|
Radiosity | TURTLE | Radiosity | TURTLE | |
06:00 | 31.7644 | 23.4353 | 533.749 | 393.793 |
07:00 | 45.4446 | 33.5285 | 763.624 | 563.393 |
08:00 | 45.4228 | 33.5123 | 763.257 | 563.122 |
09:00 | 40.9469 | 30.2100 | 688.048 | 507.632 |
10:00 | 35.9087 | 26.4929 | 603.389 | 445.172 |
11:00 | 32.1965 | 23.7542 | 541.011 | 399.152 |
12:00 | 30.7322 | 22.6737 | 516.405 | 380.996 |
13:00 | 31.8199 | 23.4763 | 534.682 | 394.483 |
14:00 | 35.2424 | 26.0013 | 592.192 | 436.912 |
15:00 | 40.1698 | 29.6367 | 674.988 | 497.998 |
16:00 | 44.9061 | 33.1312 | 754.574 | 556.717 |
17:00 | 45.9886 | 33.9298 | 772.765 | 570.137 |
18:00 | 35.3222 | 26.0603 | 593.533 | 437.902 |
mean | 38.1435 | 28.1417 | 640.940 | 472.878 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, L.; Yin, D.; Chen, S.; Chen, C.; Huang, H.; Lin, D. Virtual Geographic Simulation of Light Distribution within Three-Dimensional Plant Canopy Models. ISPRS Int. J. Geo-Inf. 2017, 6, 405. https://doi.org/10.3390/ijgi6120405
Tang L, Yin D, Chen S, Chen C, Huang H, Lin D. Virtual Geographic Simulation of Light Distribution within Three-Dimensional Plant Canopy Models. ISPRS International Journal of Geo-Information. 2017; 6(12):405. https://doi.org/10.3390/ijgi6120405
Chicago/Turabian StyleTang, Liyu, Dan Yin, Shuwei Chen, Chongcheng Chen, Hongyu Huang, and Ding Lin. 2017. "Virtual Geographic Simulation of Light Distribution within Three-Dimensional Plant Canopy Models" ISPRS International Journal of Geo-Information 6, no. 12: 405. https://doi.org/10.3390/ijgi6120405
APA StyleTang, L., Yin, D., Chen, S., Chen, C., Huang, H., & Lin, D. (2017). Virtual Geographic Simulation of Light Distribution within Three-Dimensional Plant Canopy Models. ISPRS International Journal of Geo-Information, 6(12), 405. https://doi.org/10.3390/ijgi6120405