Are We in Boswash Yet? A Multi-Source Geodata Approach to Spatially Delimit Urban Corridors
Abstract
:1. Introduction
1.1. Large Urban Areas I: The Case of Urban Corridors
1.2. Large Urban Areas II: Earth Observation
- A cluster-based method in which the input data are segmented into clusters and a threshold is calculated for each cluster [57],
- a head/tail breaks classification [58] which groups data in heavy-tailed distributions into two parts around the mean value and iterates this process until the distribution of the head values is not heavy-tailed anymore,
2. The Study Area and Its Conceptual Background
- Post-war housing boom and rapid suburbanization (1950–1970),
- inner metropolitan decline and slower population growth but massive increase in area, combined with continuous improvement of the highway system (1970–1990),
- downtown revitalization and gentrification as well as low-density extra-urban sprawl (1990–2000).
3. Data and Method
3.1. Multi-Source Geodata Sets
3.1.1. Data on the Built Environment (Including Infrastructure)
3.1.2. Socio-Economic Data
3.1.3. Data Pre-Processing
3.2. Method for a Flexible Delineation of an Urban Corridor
3.3. Plausibility of the Method
4. Results
4.1. Probability-Based Spatial Delimitation of the Boswash Urban Corridor
4.2. Validation of Results: Median Income within and Outside of Boswash
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Martine, G. Preparing for sustainable urban growth in developing areas. In UN-DESA (2011). Population Distribution, Urbanization, Internal Migration and Development: An International Perspective; United Nations Publication: New York, NY, USA, 2011; pp. 6–30. [Google Scholar]
- United Nations Human Settlements Programme (UN-Habitat). State of the World’s Cities 2012/13. Prosperity of Cities; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Georg, I.; Blaschke, T.; Taubenböck, H. New spatial dimensions of global cityscapes: From reviewing existing concepts to a conceptual spatial approach. J. Geogr. Sci. 2016, 26, 355–380. [Google Scholar] [CrossRef]
- Angel, S.; Sheppard, S.; Civco, D.L.; Buckley, R.; Chabaeva, A.; Gitlin, L.; Kraley, A.; Parent, J.; Perlin, M. The Dynamics of Global Urban Expansion; Transport and Urban Development Department, World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Soja, E.; Kanai, E. The Urbanization of the World. In The Endless City; Burdett, R., Ed.; Phaidon Press Limited: London, UK, 2007; pp. 54–69. [Google Scholar]
- Taubenböck, H.; Wiesner, M.; Felbier, A.; Marconcini, M.; Esch, T.; Dech, S. New dimensions of urban landscapes: The spatio-temporal evolution from a polynuclei area to a mega-region based on remote sensing data. Appl. Geogr. 2014, 47, 137–153. [Google Scholar] [CrossRef]
- Georg, I.; Blaschke, T.; Taubenböck, H. A Global Inventory of Urban Corridors Based on Perceptions and Night-Time Light Imagery. ISPRS Int. J. Geo-Inf. 2016, 5, 233. [Google Scholar] [CrossRef]
- Whebell, C.F.J. Corridors: A theory of urban systems. Ann. Assoc. Am. Geogr. 1969, 59, 1–26. [Google Scholar] [CrossRef]
- United Nations Human Settlements Programme (UN-Habitat). State of the World's Cities 2010/2011: Bridging the Urban Divide; Earthscan: London, UK, 2008. [Google Scholar]
- Trip, J.J. The corridor as a transport network. In Megacorridors in North West Europe. Investigating a New Transnational Planning Concept; Zonneveld, W., Trip, J.J., Eds.; Housing and Urban Policy Studies 27; Delft University Press: Delft, The Netherlands, 2003; pp. 17–23. [Google Scholar]
- Li, P.; Cao, X.S. Evolution and development of Guangzhou-Hong Kong corridor. Chin. Geogr. Sci. 2005, 15, 206–211. [Google Scholar] [CrossRef]
- Neuman, M. Regional design: Recovering a great landscape architecture and urban planning tradition. Landsc. Urban Plan. 2000, 47, 115–128. [Google Scholar] [CrossRef]
- Chapman, D.; Pratt, D.; Larkham, P.; Dickins, I. Concepts and definitions of corridors: Evidence from England‘s Midlands. J. Trans. Geogr. 2003, 11, 179–191. [Google Scholar] [CrossRef]
- Gottmann, J. Megalopolis or the urbanization of the northeastern seaboard. Econ. Geogr. 1957, 33, 189–200. [Google Scholar] [CrossRef]
- Lang, R.E.; Dhavale, D. Beyond Megalopolis: Exploring America’s New “Megapolitan” Geography; Metropolitan Institute, Virginia Technical University: Alexandria, VA, USA, 2005. [Google Scholar]
- Regional Plan Association. Northeast Megaregion 2050: A Common Future; Regional Plan Association: New York, NY, USA, 2007. [Google Scholar]
- Florida, R.; Gulden, T.; Mellander, C. The rise of the mega-region. Camb. J. Reg. Econ. Soc. 2008, 1, 459–476. [Google Scholar] [CrossRef]
- Laquian, A. The planning and governance of Asia’s mega-urban regions. In UN-DESA (2011). Population Distribution, Urbanization, Internal Migration and Development: An International Perspective; United Nations Publication: New York, NY, USA, 2011; pp. 302–322. [Google Scholar]
- Choe, S.C. The evolving urban system in North-East Asia. In Emerging World Cities in Pacific Asia; Lo, F.C., Yeung, Y.M., Eds.; UNU Press: Tokyo, Japan, 1996; pp. 498–519. [Google Scholar]
- United Nations Human Settlements Programme (UN-Habitat). The State of African Cities 2008. A Framework for Addressing Urban Challenges in Africa; UN-Habitat: Nairobi, Kenya, 2008. [Google Scholar]
- Hospers, G.-J. Beyond the Blue Banana? Structural Change in Europe’s Geo-Economy. Intereconomics 2003, 38, 76–85. [Google Scholar] [CrossRef]
- Abler, R.; Adams, J.S.; Gould, P. Spatial Organization: The Geographer’s View of the World; Prentice-Hall International: London, UK, 1972. [Google Scholar]
- Lang, S.; Kienberger, S.; Tiede, D.; Hagenlocher, M.; Pernkopf, L. Geons—Domain-specific regionalization of space. Cartogr. Geogr. Inf. Sci. 2014, 41, 214–226. [Google Scholar] [CrossRef]
- Berry, B.J.L. Interdependency of Spatial Structure and Spatial Behavior: A General Field Theory Formulation. Pap. Reg. Sci. 1968, 21, 205–227. [Google Scholar] [CrossRef]
- Castells, M. The Rise of the Network Society, 2nd ed.; Wiley-Blackwell: Oxford, UK, 2000. [Google Scholar]
- Castells, M. Local and global: Cities in the network society. Tijdschrift voor Economische en Sociale Geografie 2002, 93, 548–558. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite DMSP/OLS “city lights” satellite data to map urban area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K.C. Can night-time light data identify typologies of urbanization? A global assessment of successes and failures. Remote Sens. 2013, 5, 3476–3494. [Google Scholar] [CrossRef]
- Cai, J.; Huang, B.; Song, W. Using multi-source geospatial big data to identify the structure of polycentric cities. Remote Sens. Environ. 2017, 202, 210–221. [Google Scholar] [CrossRef]
- Corbane, C.; Kemper, T.; Freire, S.; Louvrier, C.; Pesaresi, M. Monitoring the Syrian Humanitarian Crisis with the JRC’s Global Human Settlement Layer and Night-Time Satellite Data; Publications Office of the European Union: Luxembourg, UK, 2016. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Miyazaki, H.; Shao, X.; Iwao, K.; Shibasaki, R. An automated method for global urban area mapping by integrating ASTER satellite images and GIS data. IEEE J. Sel. Top. App. Earth Obs. Remote Sens. 2013, 6, 1004–1019. [Google Scholar] [CrossRef]
- Gamba, P.; Lisini, G. Fast and efficient urban extent extraction using ASAR wide swath mode data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2184–2195. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Zhao, K.; Imhoff, M.; Thomson, A.; Bond-Lamberty, B.; Asrar, G.R.; Zhang, X.; He, C.; Elvidge, C.D. A global map of urban extent from nightlights. Environ. Res. Lett. 2015, 10, 054011. [Google Scholar] [CrossRef]
- Esch, T.; Taubenböck, H.; Roth, A.; Heldens, W.; Felbier, A.; Thiel, M.; Schmidt, M.; Müller, A.; Dech, S. TanDEM-X mission: New perspectives for the inventory and monitoring of global settlement patterns. J. Appl. Remote Sens. 2012, 6, 061702. [Google Scholar] [CrossRef]
- Bartholomé, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Bontemps, S.; Defourny, P.; Van Bogaert, E.; Arino, O.; Kalogirou, V.; Ramos Perez, J. GlobCOVER 2009 Products Description and Validation Report; Université catholique de Louvain: Louvain-la-Neuve, Belgium; ESA: Paris, France, 2011. [Google Scholar]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Tateishi, R.; Uriyangqai, B.; Al-Bilbisi, H.; Ghar, M.A.; Tsend-Ayush, J.; Kobayashi, T.; Kasimu, A.; Thanh, H.N.; Shalaby, A.; Alsaaideh, B.; et al. Production of Global Land Cover, GLCNMO. Int. J. Digit. Earth 2011, 4, 22–49. [Google Scholar] [CrossRef]
- Pesaresi, M.; Huadong, G.; Blaes, X.; Ehrlich, D.; Ferri, S.; Gueguen, L.; Marin-Herrera, M.A. A Global Human Settlement Layer from optical HR/VHR RS data: Concept and first results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2102–2131. [Google Scholar] [CrossRef]
- Yang, J.; Song, G.; Lin, J. Measuring spatial structure of China’s megaregions. J. Urban Plan. Dev. 2014, 141, 04014021. [Google Scholar] [CrossRef]
- Wei, C.; Taubenböck, H.; Blaschke, T. Measuring urban agglomeration using a city-scale dasymetric population map: A study in the Pearl River Delta, China. Habitat Int. 2017, 59, 32–43. [Google Scholar] [CrossRef]
- Taubenböck, H.; Wiesner, M. The spatial network of megaregions—Types of connectivity between cities based on settlement patterns derived from EO-data. Comput. Environ. Urban Syst. 2015, 54, 165–180. [Google Scholar] [CrossRef]
- Taubenböck, H.; Ferstl, J.; Dech, S. Regions set in stone—Classifying and categorizing regions in Europe by settlement patterns derived from EO-data. ISPRS Int. J. Geo-Inf. 2017, 6, 55. [Google Scholar] [CrossRef]
- Taubenböck, H.; Bauer, P.; Geiß, C.; Wurm, M. Mega-regions in China—A spatial analysis of settlement patterns using Earth observation data. In Proceedings of the IEEE-CPS Joint Urban Remote Sensing Event (JURSE), Dubai, UAE, 6–8 March 2017. [Google Scholar]
- Jiang, B.; Jia, T. Zipf's law for all the natural cities in the United States: A geospatial perspective. Int. J. Geogr. Inf. Sci. 2010, 25, 1269–1281. [Google Scholar] [CrossRef]
- Arcaute, E.; Hatna, E.; Ferguson, P.; Youn, H.; Johansson, A.; Batty, M. Constructing cities, deconstructing scaling laws. J. R. Soc. Interface 2015, 12, 20140745. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Woodcock, C.E. Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Stud. 2008, 45, 659–692. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Wong, D.W. The modifiable areal unit problem in multivariate statistical analysis. Environ. Plan. A 1991, 23, 1025–1044. [Google Scholar] [CrossRef]
- Openshaw, S. The Modifiable Areal Unit Problem; Geo Abstracts; University of East Anglia: Norwich, UK, 1984. [Google Scholar]
- Marceau, D.J. The scale issue in the social and natural sciences. Can. J. Remote Sens. 1999, 25, 347–356. [Google Scholar] [CrossRef]
- Pietrzak, M.B. The Modifiable Areal Unit Problem—Analysis of Correlation and Regression. Equilibrium. Q. J. Econ. Eco. Policy 2014, 9, 113–131. [Google Scholar]
- Taubenböck, H.; Standfuß, I.; Klotz, M.; Wurm, M. The physical density of the city—Deconstruction of the delusive density measure with evidence from European megacities. ISPRS Int. J. Geo-Inf. 2016, 5, 206. [Google Scholar] [CrossRef]
- Flowerdew, R. How serious is the Modifiable Areal Unit Problem for analysis of English census data? Popul. Trends 2011, 145, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Jiang, B. Head/tail breaks: A new classification scheme for data with a heavy-tailed distribution. Prof. Geogr. 2013, 65, 482–494. [Google Scholar] [CrossRef]
- Cao, X.; Chen, J.; Imura, H.; Higashi, O. A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 2205–2209. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1335–1343. [Google Scholar] [CrossRef]
- Gottmann, J. Megalopolis: The Urbanized Northeastern Seaboard of the United States; The Twentieth Century Fund: London, UK, 1961. [Google Scholar]
- Gottmann, J. Megalopolitan systems around the world. Ekistics 1976, 41, 109–113. [Google Scholar]
- Pacione, M. Urban Geography: A Global Perspective, 3rd ed.; Routledge: London, UK, 2009. [Google Scholar]
- Baigent, E. Patrick Geddes, Lewis Mumford and Jean Gottmann: Divisions over ‘megalopolis’. Prog. Hum. Geogr. 2004, 28, 687–700. [Google Scholar] [CrossRef]
- Kahn, H.; Wiener, A. The Next Thirty-Three Years: A Framework for Speculation. Daedalus 1967, 96, 705–732. [Google Scholar]
- Oswald, M.R.; Gayley, R.J.; Ames, D.L.; McNeil, S. Evaluating the Current State of the BOSWASH Transportation Corridor and Indicators of Resiliency; Department of Civil Engineering, University of Delaware: Newark, DE, USA, 2009; Available online: www.ce.udel.edu/UTC/Presentation%2009/MichelleOswald-AISIM5paper.pdf (accessed on 13 November 2017).
- Morrill, R. Classic map revisited: The growth of Megalopolis. Prof. Geogr. 2006, 58, 155–160. [Google Scholar] [CrossRef]
- Rodrigue, J.P. Freight, Gateways and Mega-Urban Regions: The Logistical Integration of the Bostwash Corridor. Tijdschrift voor Economische en Sociale Geografie 2004, 95, 147–161. [Google Scholar] [CrossRef]
- Vicino, T.J.; Hanlon, B.; Short, J.R. Megalopolis 50 years on: The transformation of a city region. Int. J. Urban Reg. Res. 2007, 31, 344–367. [Google Scholar] [CrossRef]
- School of Design, University of Pennsylvania. Reinventing megalopolis: The Northeast Megaregion. 2005. Available online: http://www.america2050.org/2005/11/reinventing-megalopolis-the-no.html (accessed on 13 November 2017).
- Kotkin, J.; Schill, M. A Map of America’s Future: Where Growth Will Be over the Next Decade. Available online: https://www.forbes.com/sites/joelkotkin/2013/09/04/a-map-of-americas-future-where-growth-will-be-over-the-next-decade/#67fd1dc3623d (accessed on 03 January 2018).
- Morrill, R. Megalopolis and Its Rivals. 2012. Available online: http://www.newgeography.com/content/002788-megalopolis-and-its-rivals (accessed on 13 November 2017).
- Hagler, Y. Defining US Megaregions; America 2050 Report; Regional Plan Association: New York, NY, USA, 2009. [Google Scholar]
- Ross, C.L.; Yang, J.; Barringer, J. Megaregions: Literature Review of the Implications for U.S. Infrastructure Investment and Transportation Planning; Center for Quality Growth and Regional Development (CQGRD), Georgia Institute of Technology: Atlanta, GA, USA, 2008. [Google Scholar]
- Florida, R.; Mellander, C.; Gulden, T. Global metropolis: Assessing economic activity in urban centers based on nighttime satellite images. Prof. Geogr. 2012, 64, 178–187. [Google Scholar] [CrossRef]
- Henderson, M.; Yeh, E.T.; Gong, P.; Elvidge, C.; Baugh, K. Validation of urban boundaries derived from global night-time satellite imagery. Int. J. Remote Sens. 2003, 24, 595–609. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.C. Why VIIRS data are superior to DMSP for mapping nighttime lights. In Proceedings of the Asia-Pacific Advanced Network 2013, Honolulu, HI, USA, 13–16 January 2013; pp. 62–69. [Google Scholar]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Esch, T.; Taubenböck, H.; Felbier, A.; Roth, A.; Müller, A.; Dech, S. The path to mapping the global urban footprint using TanDEM-X data. In Proceeding of the ISRSE 2011, Sydney, Australia, 10–15 April 2011. [Google Scholar]
- The Food and Agriculture Organization of the United Nations (FAO). 2016. Available online: http://www.fao.org/geonetwork/srv/en/main.home (accessed on 13 November 2017).
- Latham, J.; Cumani, R.; Rosati, I.; Bloise, M. Global Land Cover Share (GLC-SHARE) Database Beta-Release Version 1.0-2014; FAO: Rome, Italy, 2014. [Google Scholar]
- The European Space Agency (ESA). GlobCover 2009 (Global Land Cover Map). Available online: http://due.esrin.esa.int/page_globcover.php (accessed on 13 November 2017).
- National Oceanic and Atmospheric Administration (NOAA). Global Distribution and Density of Constructed Impervious Surfaces. Available online: https://www.ngdc.noaa.gov/eog/dmsp/download_global_isa.html (accessed on 13 November 2017).
- United States Census Bureau. TIGER Products. Available online: https://www.census.gov/geo/maps-data/data/tiger.html (accessed on 13 November 2017).
- CIESIN Center for International Earth Science Information Network—CIESIN—Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Count; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2016. [Google Scholar] [CrossRef]
- CIESIN Center for International Earth Science Information Network—CIESIN—Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2016. [Google Scholar] [CrossRef]
- United States Census Bureau. American FactFinder AFF. Available online: http://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml (accessed on 13 November 2017).
- Borruso, G. Network density and the delimitation of urban areas. Trans. GIS 2003, 7, 177–191. [Google Scholar] [CrossRef]
- Xie, Y.; Weng, Q. Updating urban extents with nighttime light imagery by using an object-based thresholding method. Remote Sens. Environ. 2016, 187, 1–13. [Google Scholar] [CrossRef]
- Priemus, H. Szenarien und Konzepte für die Entwicklung von Korridoren in den Niederlanden und in der Europäischen Union. Inf. Raumentwickl. 2004, 62, 35–48. [Google Scholar]
- Trip, J.J. The corridor as an axis of economic development. In Megacorridors in North West Europe. Investigating a New Transnational Planning Concept; Zonneveld, W., Trip, J.J., Eds.; Housing and Urban Policy Studies 27; Delft University Press: Delft, The Netherlands, 2003; pp. 24–35. [Google Scholar]
- DeNavas-Watt, C.; Proctor, B.D.; Smith, J.C. Income, Poverty, and Health Insurance Coverage in the United States; U.S. Census Bureau, Current Population Reports 2010; U.S. Government Printing Office: Washington, DC, USA, 2011; pp. 60–239.
- Harrison, J.; Growe, A. From places to flows? Planning for the new ‘regional world’ in Germany. Eur. Urban Reg. Stud. 2014, 21, 21–41. [Google Scholar] [CrossRef] [Green Version]
- Nelson, G.D.; Rae, A. An Economic Geography of the United States: From Commutes to Megaregions. PLoS ONE 2016, 11, e0166083. [Google Scholar] [CrossRef] [PubMed]
- Derudder, B.; Witlox, F. An appraisal of the use of airline data in assessing the world city network: A research note on data. Urban Stud. 2005, 42, 2371–2388. [Google Scholar] [CrossRef]
- Ratti, C.; Williams, S.; Frenchman, D.; Pulselli, R.M. Mobile landscapes: Using location data from cell phones for urban analysis. Environ. Plan. B Urban Anal. City Sci. 2006, 33, 727–748. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Weng, Q.; Resch, B. Collective sensing: Integrating geospatial technologies to understand urban systems—An overview. Remote Sens. 2011, 3, 1743–1776. [Google Scholar] [CrossRef]
- Calabrese, F.; Colonna, M.; Lovisolo, P.; Parata, D.; Ratti, C. Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome. IEEE Trans. Intell. Trans. Syst. 2011, 12, 141–151. [Google Scholar] [CrossRef]
- Dicken, P. Global Shift: Mapping and Changing Contours of the World Economy; Sage Publications Ltd.: London, UK, 2014. [Google Scholar]
- Klotz, M.; Kemper, T.; Geiß, C.; Esch, T.; Taubenböck, H. How good is the map? A multi-scale cross-comparison framework for global settlement layers: Evidence from Central Europe. Remote Sens. Environ. 2016, 178, 191–212. [Google Scholar] [CrossRef] [Green Version]
- Jing, W.; Yang, Y.; Yue, X.; Zhao, X. Mapping urban areas with integration of DMSP/OLS nighttime light and MODIS data using machine learning techniques. Remote Sens. 2015, 7, 12419–12439. [Google Scholar] [CrossRef]
- Jiang, B.; Yin, J.; Liu, Q. Zipf’s law for all the natural cities around the world. Int. J. Geogr. Inf. Sci. 2015, 29, 498–522. [Google Scholar] [CrossRef]
- World Bank. 2016. Available online: http://data.worldbank.org/indicator/EN.POP.DNST (accessed on 13 November 2017).
- Short, J.R. The Liquid City of Megalopolis. Documents d'Anàlisi Geogràfica 2009, 55, 77–90. [Google Scholar]
- INSPIRE—Infrastructure for Spatial Information in Europe. Available online: http://inspire.ec.europa.eu (accessed on 13 November 2017).
- Wei, C.; Blaschke, T.; Kazakopoulos, P.; Taubenböck, H.; Tiede, D. Is Spatial Resolution Critical in Urbanization Velocity Analysis? Investigations in the Pearl River Delta. Remote Sens. 2017, 9, 80. [Google Scholar] [CrossRef]
Term | Area (sq. mi.) | Population (2000) | Number of Counties | Number of States | Length (in miles) | Source |
---|---|---|---|---|---|---|
Megalopolis, Northeastern Seaboard | - | n/a | - | - | 600 | Gottmann (1957, 1961) |
(30 million in 1950, about 37 million in 1960) | ||||||
Northeast Megaregion (core only—similar to Megapolitan) | 62,440 | 47.6 million | - | - | 450 | Penn School, 2005 |
Northeast Megaregion (core plus support zone) | 188,380 | 69.2 million | 405 | 14 incl. D.C. | - | Penn School, 2005 |
Megapolitan | 70,062 | 49,182,941 (of which 89.3% are “urbanized”) | 145 | 12 plus 1 district (D.C.) | - | Morrison Institute Report by Lang & Dhavale (2005) |
Northeast Megapolitan | 62,612 | 51,601,118 | - | - | - | Morrison Institute, 2008 |
Northeast Megaregion | 61,942 | 49,563,296 | 142 | 12 plus 1 district (D.C.) | 450 | Hagler (America 2050), 2009; Regional Plan Association, 2007 |
Megalopolis | - | - | - | 10 | 450 | Miller, 1975 (in Oswald et al., 2009) |
Megalopolis | 52,310 | 48,720,108 | 117 | 12 plus 1 district (D.C.) | - | Vicino, Hanlon & Short, 2007 |
Megalopolis | 52,310 | Almost 50 million | 124 | 12 plus 1 district (D.C.) | 600 | Short, 2009; Vicino, Hanlon & Short, 2007 |
Megalopolis | 13,490 | 42.4 million; 45.4 million (2010) | - | - | - | Morrill, 2006 & 2012 |
New Mega, Mega-Region, Corridor | - | 54.3 million | - | - | 500 | Florida et al., 2008 |
Year | Population (Megalopolis) | Population (Metro) * | Population of Metro Centers | Population of Suburban Counties | Area (sq. mi) (Megalopolis) | Density (Megalopolis) |
---|---|---|---|---|---|---|
2000 | 48,720,108 | 47,681,719 | 16,453,217 | 31,228,502 | 52,310 | 931.3 |
1950 | 31,924,488 | 22,720,346 ** | 16,435,953 | 6,284,393 | 52.310 | 610.2 |
Year | Population (in 1000) | Area (sq. mi.) | Density | Population Change (%) |
---|---|---|---|---|
2010 | 45,357 | - | - | 7 |
2000 | 42,374 | 13,490 | 3155 | 15.8 |
1990 | 36,580 | 10,185 | 3590 | 6.4 |
1980 | 34,365 | 8390 | 4100 | 1.2 |
1970 | 34,005 | 7006 | 4768 | 18.5 |
1960 | 29,441 | 5348 | 5285 | 20 |
1950 | 24,534 | 3283 | 7315 | n/a |
Layer | Category | Source | Original Resolution | Year | Threshold | Threshold Info | |
---|---|---|---|---|---|---|---|
1 | Global Urban Footprint (GUF) | Built environment | DLR | 12 m | 2010–2012 | ≥5 | max. 250 |
2 | Night time lights DMSP-OLS | Built environment | NOAA | 30 arcsec (~1 km) | 2010 | ≥15 | max. 63 |
3 | GLC share—artificial surfaces | Built environment | FAO | 30 arcsec (~1 km) | 2013 | ≤2000 | all areas within 2 km of GLC artificial surfaces |
4 | GlobCover (MERIS) | Built environment | ESA 2010 and UCLouvain | 300 m | 2009 | ≤16,000 | all areas within 16 km of GlobCover artificial surfaces |
5 | Estimated Impervious Surface Area | Built environment | NOAA | 1000 m | 2010 | ≥3.3 | max. 100 |
6 | Rail lines | Built environment (Infrastructure) | TIGER Line data (US Census) | n/a (vector data) | 2010 | ≥0.09 | max. 0.83 |
7 | All roads | Built environment (Infrastructure) | TIGER Line data (US Census) | n/a (vector data) | 2010 | ≥295 | max. 897 |
8 | GPWv4 Population Count | Socio-economic | CIESIN (SEDAC) | 30 arcsec (~1 km) | 2010 | ≥38 | max. 35,848 |
9 | GPWv4 Population Density | Socio-economic | CIESIN (SEDAC) | 30 arcsec (~1 km) | 2010 | ≥65 | max. 55,068 |
10 | Income | Socio-economic | American Fact Finder | Census Tract level (administrative unit) | 2010 | n/a | n/a |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georg, I.; Blaschke, T.; Taubenböck, H. Are We in Boswash Yet? A Multi-Source Geodata Approach to Spatially Delimit Urban Corridors. ISPRS Int. J. Geo-Inf. 2018, 7, 15. https://doi.org/10.3390/ijgi7010015
Georg I, Blaschke T, Taubenböck H. Are We in Boswash Yet? A Multi-Source Geodata Approach to Spatially Delimit Urban Corridors. ISPRS International Journal of Geo-Information. 2018; 7(1):15. https://doi.org/10.3390/ijgi7010015
Chicago/Turabian StyleGeorg, Isabel, Thomas Blaschke, and Hannes Taubenböck. 2018. "Are We in Boswash Yet? A Multi-Source Geodata Approach to Spatially Delimit Urban Corridors" ISPRS International Journal of Geo-Information 7, no. 1: 15. https://doi.org/10.3390/ijgi7010015
APA StyleGeorg, I., Blaschke, T., & Taubenböck, H. (2018). Are We in Boswash Yet? A Multi-Source Geodata Approach to Spatially Delimit Urban Corridors. ISPRS International Journal of Geo-Information, 7(1), 15. https://doi.org/10.3390/ijgi7010015