A Task-Oriented Knowledge Base for Geospatial Problem-Solving
Abstract
:1. Introduction
2. Related Work
2.1. The Task-Based Approach
- The task-based language. A task ontology language based on the OWL (Web Ontology Language), named OWL-T, has been proposed to define task templates to formalize user demands and business processes at a high-level abstraction, which is used for the task of a trip plan [26]. Hu et al. [19] extended the task-oriented approach to the OGC Sensor Web domain. A Task Model Language, called TaskML, is a language for modeling tasks. The significant features of TaskML are Task Trigger, Task Priority, and Task QoS.
- The task ontology approach. Sun et al. [27] proposed a task ontology-driven approach for the geospatial domain to realize live geoprocessing in a service-oriented environment, which includes three steps: task model generation, process model instantiation, and workflow execution. A case study of flood analysis is used to illustrate the effect and role of the task. Liu [28] proposed a task ontology model for domain-independent dialogue management and created a dialogue manager that is task-independent. Park et al. [29] presented a task ontology based on travelers’ perspectives using tasks, activities, relations, and properties. A prototype system was developed using task-oriented menus.
- A task-based approach for geospatial data acquisition. Wiegand and García [21] proposed a task-based approach to advance geospatial data source retrieval. More concretely, they designed a conceptual model that combines ontologies of tasks, data sources, metadata, and places and uses the Jess rule engine and Protégé tool to provide automatic processing for data retrieval. Qiu et al. [30] proposed a task-oriented approach for efficient disaster data management that performed mapping from emergency tasks to data sources and calculated the correlation between the data set and a generic task. A flood emergency example illustrates the use of this approach.
2.2. Geospatial Problem-Solving
3. Task as a Reusable Problem-Solving Component
3.1. An Application Scenario
3.2. Task and Task Model
3.3. Geooperator
3.4. Formal Definition
4. A Task-Oriented Knowledge Base
4.1. Background on Ontologies
4.2. Ontologies at the Heart of the Knowledge Base
4.2.1. Task Ontology
4.2.2. Process Ontology
4.2.3. Data Type Ontology
4.2.4. GIS Operation Ontology
4.2.5. Interface Ontology
5. Implementation
5.1. Creation of Ontologies
5.2. Representation of Ontology Knowledge
5.3. Task Instances
5.4. Prototype
6. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yue, P.; Baumann, P.; Bugbee, K.; Jiang, L. Towards intelligent giservices. Earth Sci. Inform. 2015, 8, 463–481. [Google Scholar] [CrossRef]
- Li, X.; Song, J.; Huang, B. A scientific workflow management system architecture and its scheduling based on cloud service platform for manufacturing big data analytics. Int. J. Adv. Manuf. Technol. 2016, 84, 119–131. [Google Scholar] [CrossRef]
- Yang, Z.L.; Cao, J.; Hu, K.; Gui, Z.P.; Wu, H.Y.; You, L. Developing a cloud-based online geospatial information sharing and geoprocessing platform to facilitate collaborative education and research. In Proceedings of the ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016 XXIII ISPRS Congress, Prague, Czech Republic, 12–19 July 2016; Volume XLI-B6, pp. 3–7. [Google Scholar]
- Peng, Y.; Gong, J.; Di, L.; Jie, Y.; Sun, L.; Sun, Z.; Qian, W. GeoPW: Laying blocks for the geospatial processing web. Trans. GIS 2010, 14, 755–772. [Google Scholar]
- Qi, K.; Gui, Z.; Li, Z.; Guo, W.; Wu, H.; Gong, J. An extension mechanism to verify, constrain and enhance geoprocessing workflows invocation. Trans. GIS 2016, 20, 240–258. [Google Scholar] [CrossRef]
- Zhang, M.; Bu, X.; Yue, P. Geojmodelbuilder: An open source geoprocessing workflow tool. Open Geospat. Data Softw. Stand. 2017, 2, 8. [Google Scholar] [CrossRef]
- Yue, P.; Zhang, M.; Tan, Z. A geoprocessing workflow system for environmental monitoring and integrated modelling. Environ. Model. Softw. 2015, 69, 128–140. [Google Scholar] [CrossRef]
- Yue, P.; Di, L.; Yang, W.; Yu, G.; Zhao, P. Semantics-based automatic composition of geospatial web service chains. Comput. Geosci. 2007, 33, 649–665. [Google Scholar] [CrossRef]
- Lamprecht, A.L.; Steffen, B.; Margaria, T. Scientific workflows with the jabc framework. Int. J. Softw. Tools Technol. Transf. 2016, 18, 629–651. [Google Scholar] [CrossRef]
- Al-Areqi, S.; Lamprecht, A.L.; Margaria, T. Constraints-driven automatic geospatial service composition: Workflows for the analysis of sea-level rise impacts. In Proceedings of the International Conference on Computational Science and Its Applications, Beijing, China, 4–7 July 2016; pp. 134–150. [Google Scholar]
- Kliment, T.; Bordogna, G.; Frigerio, L.; Crema, A.; Boschetti, M.; Brivio, P.A.; Sterlacchini, S. Image data and metadata workflows automation in geospatial data infrastructure deployed for agricultural sector. In Proceedings of the Geoscience and Remote Sensing Symposium, Milan, Italy, 26–31 July 2015; pp. 146–149. [Google Scholar]
- Farnaghi, M.; Mansourian, A. Disaster planning using automated composition of semantic OGC web services: A case study in sheltering. Comput. Environ. Urban Syst. 2013, 41, 204–218. [Google Scholar] [CrossRef]
- Al-Areqi, S.; Lamprecht, A.-L.; Margaria, T. Automatic workflow composition in the geospatial domain: An application on sea-level rise impacts analysis. In Proceedings of the 19th AGILE International Conference on Geographic Information Science, Helsinki, Finland, 14–17 June 2016. [Google Scholar]
- Sun, Z.; Yue, P.; Di, L. Geopwtmanager: A task-oriented web geoprocessing system. Comput. Geosci. 2012, 47, 34–45. [Google Scholar] [CrossRef]
- Jung, C.T.; Sun, C.H.; Yuan, M. An ontology-enabled framework for a geospatial problem-solving environment. Comput. Environ. Urban Syst. 2013, 38, 45–57. [Google Scholar] [CrossRef]
- Lutz, M. Ontology-based descriptions for semantic discovery and composition of geoprocessing services. Geoinformatica 2007, 11, 1–36. [Google Scholar] [CrossRef]
- Hofer, B.; Mãs, S.; Brauner, J.; Bernard, L. Towards a knowledge base to support geoprocessing workflow development. Int. J. Geogr. Inf. Syst. 2016, 31, 694–716. [Google Scholar] [CrossRef]
- Müller, M. Hierarchical profiling of geoprocessing services. Comput. Geosci. 2015, 82, 68–77. [Google Scholar] [CrossRef]
- Hu, L.; Yue, P.; Zhang, M.; Gong, J.; Jiang, L.; Zhang, X. Task-oriented sensor web data processing for environmental monitoring. Earth Sci. Inform. 2015, 8, 511–525. [Google Scholar] [CrossRef]
- Gorton, S.; Reiff-Marganiec, S. Towards a task-oriented, policy-driven business requirements specification for web services. In Proceedings of the International Conference on Business Process Management, Vienna, Austria, 5–7 September 2006; pp. 465–470. [Google Scholar]
- Wiegand, N.; García, C. A task-based ontology approach to automate geospatial data retrieval. Trans. GIS 2007, 11, 355–376. [Google Scholar] [CrossRef]
- Luo, J. The Semantic Geospatial Problem Solving Environment: An Enabling Technology for Geographical Problem Solving under Open, Heterogeneous Environments. Ph.D. Thesis, The Pennsylvania State University, Pennsylvania, PA, USA, 2007. [Google Scholar]
- Jung, C.T.; Sun, C.H. Ontology-driven problem solving framework for spatial decision support systems. Tetsu- to-Hagane. 2010, 47, 512–515. [Google Scholar]
- Vahedi, B.; Kuhn, W.; Ballatore, A. Question-based spatial computing—A case study. In Geospatial Data in a Changing World; Springer International Publishing: Cham, Switzerland, 2016; pp. 37–50. [Google Scholar]
- Albrecht, J. Universal elementary GIS tasks-beyond low-level commands. In Proceedings of the Sixth International Symposium on Spatial Data Handling, Edinburgh, UK, 3–7 August 1994; pp. 209–222. [Google Scholar]
- Tran, V.X.; Tsuji, H. Owl-t: An ontology-based task template language for modeling business processes. In Proceedings of the Acis International Conference on Software Engineering Research, Management & Applications, Busan, Korea, 20–22 August 2007; pp. 101–108. [Google Scholar]
- Sun, Z.; Yue, P.; Lu, X.; Zhai, X.; Hu, L. A task ontology driven approach for live geoprocessing in a service-oriented environment. Trans. GIS 2012, 16, 867–884. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, G. A task ontology model for domain independent dialogue management. In Proceedings of the IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems, Tianjin, China, 2–4 July 2012; pp. 148–153. [Google Scholar]
- Park, H.; Yoon, A.; Kwon, H.C. Task model and task ontology for intelligent tourist information service. Int. J. U- E-Serv. Sci. Technol. 2012, 5, 43–58. [Google Scholar]
- Linyao, Q.; Zhiqiang, D.; Qing, Z. A task-oriented disaster information correlation method. In Proceedings of the 2015 International Workshop on Spatiotemporal Computing, Fairfax, VA, USA, 13–15 July 2015; Volume II-4/W2, pp. 169–176. [Google Scholar]
- Mikita, T.; Balogh, P. Usage of geoprocessing services in precision forestry for wood volume calculation and wind risk assessment. Acta Univ. Agric. Silvic. Mendel. Brun. 2015, 63, 793–801. [Google Scholar] [CrossRef]
- Bensmann, F.; Alcacerlabrador, D.; Ziegenhagen, D.; Roosmann, R. The richwps environment for orchestration. ISPRS Int. J. Geo-Inf. 2014, 3, 1334–1351. [Google Scholar] [CrossRef]
- Hull, D.; Wolstencroft, K.; Stevens, R.; Goble, C.; Pocock, M.R.; Li, P.; Oinn, T. Taverna: A tool for building and running workflows of services. Nucleic Acids Res. 2006, 34, 729–732. [Google Scholar] [CrossRef] [PubMed]
- Wolstencroft, K.; Haines, R.; Fellows, D.; Williams, A.; Withers, D.; Owen, S.; Soilandreyes, S.; Dunlop, I.; Nenadic, A.; Fisher, P. The taverna workflow suite: Designing and executing workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res. 2013, 41, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Taylor, I.; Shields, M.; Wang, I.; Harrison, A. The triana workflow environment: Architecture and applications. In Workflows e-Science; Springer: London, UK, 2007; pp. 320–339. [Google Scholar]
- Altintas, I.; Berkley, C.; Jaeger, E.; Jones, M. Kepler: An extensible system for design and execution of scientific workflows. In Proceedings of the International Conference on Scientific and Statistical Database Management, Santorini Island, Greece, 23 June 2004; pp. 423–424. [Google Scholar]
- Lamprecht, A.L.; Margaria, T.; Steffen, B. Modeling and Execution of Scientific Workflows with the jABC Framework; Springer: Berlin/Heidelberg, Germany, 2014; pp. 14–29. [Google Scholar]
- Samadzadegan, F.; Saber, M.; Zahmatkesh, H.; Joze Ghazi Khanlou, H. An architecture for automated fire detection early warning system based on geoprocessing service composition. In Proceedings of the SMPR 2013, Tehran, Iran, 5–8 October 2013; pp. 351–355. [Google Scholar]
- Arul, U.; Prakash, S. A unified algorithm to automatic semantic composition using multilevel workflow orchestration. In Cluster Computing; Springer: New York, NY, USA, 2018; pp. 1–22. [Google Scholar]
- Hofer, B.; Brauner, J.; Jackson, M.; Granell, C.; Rodrigues, A.; Nüst, D.; Wiemann, S. Descriptions of spatial operations—Recent approaches and community feedback. Int. J. Spat. Data Infrastruct. Res. 2015, 10, 124–137. [Google Scholar]
- Brauner, J. Formalizations for Geooperators-Geoprocessing in Spatial Data Infrastructures. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2015. [Google Scholar]
- Hofer, B.; Papadakis, E.; Mäs, S. Coupling knowledge with GIS operations: The benefits of extended operation descriptions. Int. J. Geo-Inf. 2017, 6, 40. [Google Scholar] [CrossRef]
- Crubézy, M.; Musen, M.A. Ontologies in Support of Problem Solving; Springer: Berlin/Heidelberg, Germany, 2004; pp. 321–341. [Google Scholar]
- Zhao, P.; Di, L.; Yu, G.; Yue, P.; Wei, Y.; Yang, W. Semantic web-based geospatial knowledge transformation. Comput. Geosci. 2009, 35, 798–808. [Google Scholar] [CrossRef]
- Gruber, T.R. A translational approach to portable ontologies. Knowl. Acquis. 1993, 5, 199–220. [Google Scholar] [CrossRef]
- Perez, A.G.; Benjamins, V.R. Overview of knowledge sharing and reuse components: Ontologies and problem-solving methods. In Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI’99), Stockholm, Sweden, 31 July–6 August 1999. [Google Scholar]
- Zhong, S.; Fang, Z.; Zhu, M.; Huang, Q. A geo-ontology-based approach to decision-making in emergency management of meteorological disasters. Nat. Hazards 2017, 89, 531–554. [Google Scholar] [CrossRef]
- The International Organization for Standardization (ISO). ISO 19107: Geographic Information—Spatial Schema; The International Organization for Standardization: Geneva, Switzerland, 2003. [Google Scholar]
- ISO. ISO 19123: Geographic Information—Schema for Coverage Geometry and Functions; The International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- OGC. OGC Abstract Specifications: Topic 5—Features; Open Geospatial Consortium: Wayland, MA, USA, 2009; pp. 8–126. [Google Scholar]
- Apache Jena. Available online: http://jena.apache.org/ (accessed on 29 August 2018).
- Zhang, C.; Zhao, T.; Li, W. Automatic search of geospatial features for disaster and emergency management. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 409–418. [Google Scholar] [CrossRef]
- Wu, X.; Liu, X.; Zhou, S. Principle and Method of MapGIS IGServer; Publishing House of Electronics Industry: Beijing, China, 2012. [Google Scholar]
Task Type | Abbreviation | SubTask | Description |
---|---|---|---|
PotentialDegreeCalTask | PDCTask | FQTask FWCTask PDITask | Calculate potential degree index from multiple influence factor data |
EffectiveRainfallCalTask | ERCTask | Calculate effective rainfall | |
EarlyWarningAnalysisTask | EWATask | OATask HRITask EWLTask | Generate a forecast map according to an early warning model |
FactorQuantificationTask | FQTask | Quantify the factor data according to a certainty factor model | |
FactorWeightCalTask | FWCTask | Calculate factor weight | |
PotentialDegreeIndexCalTask | PDITask | Calculate potential degree index | |
OverlayAnalysisTask | OATask | Overlay the input data. | |
HazardRiskIndexCalTask | HRITask | Calculate the hazard risk index | |
EarlyWarningLevelTask | EWLTask | Divide early-warning level according to the risk index |
Data Name | Service Type | SRS | Geometry |
---|---|---|---|
Potential_Degree_Data | WFS | Xi’an 80 | Polygon |
Effective_Rainfall_Data | WFS | Xi’an 80 | Polygon |
Forecast_Rainfall_Data | WFS | Xi’an 80 | Polygon |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, C.; Xie, Z.; Ma, K.; Guo, M.; Wu, L. A Task-Oriented Knowledge Base for Geospatial Problem-Solving. ISPRS Int. J. Geo-Inf. 2018, 7, 423. https://doi.org/10.3390/ijgi7110423
Zhuang C, Xie Z, Ma K, Guo M, Wu L. A Task-Oriented Knowledge Base for Geospatial Problem-Solving. ISPRS International Journal of Geo-Information. 2018; 7(11):423. https://doi.org/10.3390/ijgi7110423
Chicago/Turabian StyleZhuang, Can, Zhong Xie, Kai Ma, Mingqiang Guo, and Liang Wu. 2018. "A Task-Oriented Knowledge Base for Geospatial Problem-Solving" ISPRS International Journal of Geo-Information 7, no. 11: 423. https://doi.org/10.3390/ijgi7110423
APA StyleZhuang, C., Xie, Z., Ma, K., Guo, M., & Wu, L. (2018). A Task-Oriented Knowledge Base for Geospatial Problem-Solving. ISPRS International Journal of Geo-Information, 7(11), 423. https://doi.org/10.3390/ijgi7110423