Once upon a Spacetime: Visual Storytelling in Cognitive and Geotemporal Information Spaces
Abstract
:1. Introduction
2. Cognitive-Scientific Foundation
2.1. Space
2.2. Time
3. Spatiotemporal Visualization Methods
- (a)
- Multiple coordinated views combine a standard map with a time graph to visualize spatial and temporal data aspects in parallel [39]. This method utilizes separate representations for the locational and temporal distributions of story events and usually coordinates these views via linked interaction methods, e.g., allowing for linked brushing [40]. For multiple coordinated views, it is likely that users generate two separate internal representations (one for each view) with some links to one another. Depending on the visual work and interaction a user invests to bridge this split of attention [41], these links can be relatively densely knit.
- (b)
- Animation or slideshows (also “dynamic representations” [42], p. 6) map narrative time orientation to the time dimension of the visual representation [26]. As such, they can represent the movement of objects or actors as a continuous dynamic (i.e., as smooth animation) or as a discrete sequence of steps, which we refer to as a slideshow. These techniques can further be implemented as non-interactive or interactive representations [43] (p. 1588), allowing users to go back and forth in time. It is well known that animation can foster the perception of even subtle changes or display dynamics, but also that the user’s working memory is easily overwhelmed when too much information changes too fast [26]. If the visualization is more complex, a slideshow might be better suited, which reduces the temporal continuum to discrete intervals. Users then can interactively go back and forth from one story event to the next. Still, considering one’s visual view and comparing it to the next one is very demanding for the working memory and increases interaction costs by repeatedly going back and forth.
- (c)
- Layer superimposition techniques merge multiple temporal positions—or temporal layers—into one integrated representation, while using transparency to see all positions at once [32]. Time is mostly encoded with an additional retinal variable, like color, or with the annotation of temporal values or vectorial references, signifying a temporal sequence of positions in space. In Figure 1, the map on the left-hand side uses a numerical sequence and arrows to encode the time orientation of the narrative. By using such a technique, users can build up a spatiotemporally integrated internal representation of the story. Aside from the expected challenges posed by visual clutter and occlusion, a concern regarding this technique is whether time (e.g., encoded by a color scale) is visually salient enough to be as well integrated into the story situation model as geographic space.
- (d)
- Layer juxtaposition separates spatiotemporal data into multiple temporal layers, to arrange these layers in parallel—mostly along a spatial reading dimension. This results either in “small multiple” maps [43] or, more generally, in the hybrid genre of data comics [33,44]. In face of juxtaposed views, the user must sequentially read and compare multiple adjacent views to detect the visual changes and comprehend how the story unfolds over time. Though a lot of visual work is required to compare the different views, the user does not need to remember them like in a slideshow; thereby, the interaction costs are lower.
- (e)
- Space–time cube representations merge maps and timelines orthogonally within a cubic space, which allows one to map every space–time path as a three-dimensional trajectory [45,46,47,48]. Aside from providing such a direct integration of spatiotemporal coordinates, space–time cubes also come with the specific functionality of supporting the cognitive translation and navigation among all other spatiotemporal views [49] (see Section 4). From a cognitive perspective, space–time cube representations offer one perceptually integrated view in which the story can unfold. In contrast to a superimposition view, time is also mapped to space, making the temporal and geographic information of movement paths similarly salient. Therefore, the user can more easily build up a spatiotemporally integrated situation model of a story. However, in such a three-dimensional visualization, visual clutter—and increased interaction costs—are a constant challenge [50]. Still, evaluations confirm that space–time cube visualizations are easy to use and are especially suited for the exploration of spatiotemporal patterns [51,52].
4. Towards a Multi-Perspective Interface for Narrative Visualization
4.1. Visualizing Biography Data and Historical Narratives
4.2. Supporting the Cognitive Integration of Multiple Perspectives
5. Discussion
5.1. Going beyond Space and Time
5.2. Distant Reading: Combining Geovisualization with Non-Geographic Visualization Techniques
5.3. Close Reading: Combining Visual Analysis with Textual Analysis
5.4. Visualizing Non-Linear Stories
5.5. Going beyond the Situation Model—Narrative Effects and Drawbacks
5.6. Evaluation Challenge
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
References
- Shmoop Editorial Team. The Odyssey. Available online: https://www.shmoop.com/odyssey/ (accessed on 24 January 2018).
- Gershon, N.; Page, W. What storytelling can do for information visualization. Commun. ACM 2001, 44, 31–37. [Google Scholar] [CrossRef]
- Eccles, R.; Kapler, T.; Harper, R.; Wright, W. Stories in GeoTime. IEEE Vis. Anal. Sci. Technol. 2007, 7, 3–17. [Google Scholar]
- Wohlfart, M.; Hauser, H. Story telling aspects in volume visualization. In Proceedings of the 9th Joint Eurographics/IEEE VGTC conference on Visualization, Norrköping, Sweden, 23–25 May 2007; pp. 91–98. [Google Scholar]
- Segel, E.; Heer, J. Narrative visualization: Telling stories with data. IEEE Trans. Vis. Comput. Graph. 2010, 16, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Hullman, J.; Diakopoulos, N. Visualization rhetoric: Framing effects in narrative visualization. IEEE Trans. Vis. Comput. Graph. 2011, 17, 2231–2240. [Google Scholar] [CrossRef] [PubMed]
- Caquard, S. Cartography I: Mapping narrative cartography. Prog. Hum. Geogr. Lond. 2013, 37, 135–144. [Google Scholar] [CrossRef]
- Kosara, R.; Mackinlay, J. Storytelling: The next step for visualization. Computer 2013, 46, 44–50. [Google Scholar] [CrossRef]
- Hullman, J.; Drucker, S.; Riche, N.H.; Lee, B.; Fisher, D.; Adar, E. A deeper understanding of sequence in narrative visualization. IEEE Trans. Vis. Comput. Graph. 2013, 19, 2406–2415. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Riche, N.H.; Isenberg, P.; Carpendale, S. More than telling a story: Transforming data into visually shared stories. IEEE Comput. Graph. Appl. 2015, 35, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Stefaner, M. Worlds, Not Stories. Well-Formed Data, 2014. Available online: http://well-formed-data.net/archives/1027/worlds-not-stories (accessed on 20 January 2018).
- Ryan, M.-L. Narrative. In Routledge Encyclopedia of Narrative Theory; Taylor & Francis Group: Oxfordshire, UK, 2010; pp. 344–348. [Google Scholar]
- Bruner, J. Narrative and paradigmatic modes of thought. In Learning and Teaching the Ways of Knowing; University of Chicago Press: Chicago, IL, USA, 1985; pp. 97–115. [Google Scholar]
- Graesser, A.C.; Olde, B.; Klettke, B. How does the mind construct and represent stories? In Narrative Impact: Social and Cognitive Foundations; Erlbaum: Mahwah, NJ, USA, 2002; pp. 231–263. [Google Scholar]
- Wilkens, T.; Hughes, A.; Wildemuth, B.M.; Marchionini, G. The role of narrative in understanding digital video: An exploratory analysis. Proc. Am. Soc. Inf. Sci. Technol. 2005, 40, 323–329. [Google Scholar] [CrossRef]
- Stein, N.L.; Kissel, V.I. Story schemata and causal structure. In Routledge Encyclopedia of Narrative Theory; Taylor & Francis Group: Oxfordshire, UK, 2010; pp. 567–568. [Google Scholar]
- Dijk, T.V.; Kintsch, W. Strategies of Discourse Comprehension; Academic Press: Cambridge, CA, USA, 1983. [Google Scholar]
- Zwaan, R.A.; Langston, M.C.; Graesser, A.C. The construction of situation models in narrative comprehension: An event-indexing model. Psychol. Sci. 1995, 6, 292–297. [Google Scholar] [CrossRef]
- Zwaan, R.A.; Radvansky, G.A. Situation models in language comprehension and memory. Psychol. Bull. 1998, 123, 162–185. [Google Scholar] [CrossRef] [PubMed]
- Schnotz, W. Integrated Model of Text and Picture Comprehension; Mayer, R.E., Ed.; The Cambridge Handbook of Multimedia Learning; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Taylor, H.A.; Tversky, B. Spatial mental models derived from survey and route descriptions. J. Mem. Lang. 1992, 31, 261–292. [Google Scholar] [CrossRef]
- Tversky, B. Cognitive Maps, Cognitive Collages, and Spatial Mental Models; Frank, A.U., Campari, I., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; Volume 716, pp. 14–24. [Google Scholar]
- Mark, D.M.; Freksa, C.; Hirtle, S.C.; Lloyd, R.; Tversky, B. Cognitive models of geographical space. Int. J. Geogr. Inf. Sci. 1999, 13, 747–774. [Google Scholar] [CrossRef]
- Tversky, B. Structures of mental spaces: How people think about space. Environ. Behav. 2003, 35, 66–80. [Google Scholar] [CrossRef]
- Kosara, R. Stories Don’t Tell Themselves. Available online: https://eagereyes.org/blog/2010/stories-dont-tell-themselves (accessed on 20 January 2018).
- Kriglstein, S.; Pohl, M.; Smuc, M. Pep up your time machine: Recommendations for the design of information visualizations of time-dependent data. In Handbook of Human Centric Visualization; Springer: Belin/Heidelberg, Germany, 2014; pp. 203–225. [Google Scholar]
- Rosenberg, D.; Grafton, A. Cartographies of Time: A History of the Timeline; Princeton Architectural Press: New York, NY, USA, 2012; ISBN 1-61689-058-4. [Google Scholar]
- Davis, S.B.; Bevan, E.; Kudikov, A. Just in time: Defining historical chronographics. In Electronic Visualisation in Arts and Culture; Springer: Belin/Heidelberg, Germany, 2013; pp. 243–257. [Google Scholar]
- Champagne, M. Diagrams of the past: How timelines can aid the growth of historical knowledge. Cogn. Semiot. 2016, 9, 11–44. [Google Scholar] [CrossRef]
- Brehmer, M.; Lee, B.; Bach, B.; Riche, N.H.; Munzner, T. Timelines revisited: A design space and considerations for expressive storytelling. IEEE Trans. Vis. Comput. Graph. 2017, 23, 2151–2164. [Google Scholar] [CrossRef] [PubMed]
- McCloud, S. Understanding Comics: The Invisible Art; HarperCollins Publishers: Northamp, MA, USA, 1993. [Google Scholar]
- Javed, W.; Elmqvist, N. Exploring the design space of composite visualization. In Proceedings of the 2012 IEEE Pacific on Visualization Symposium (PacificVis), Songdo, Korea, 28 February–2 March 2012; pp. 1–8. [Google Scholar]
- Zhao, Z.; Marr, R.; Elmqvist, N. Data Comics: Sequential Art for Data-Driven Storytelling; Technical Report; Human Computer Interaction Lab, University of Maryland: College Park, MD, USA, 2015. [Google Scholar]
- Tversky, B. Visualizing thought. Top. Cogn. Sci. 2011, 3, 499–535. [Google Scholar] [CrossRef] [PubMed]
- Skupin, A.; Fabrikant, S.I. Spatialization methods: A cartographic research agenda for non-geographic information visualization. Cartogr. Geogr. Inf. Sci. 2003, 30, 99–119. [Google Scholar] [CrossRef]
- Mountain, D. Visualizing, querying and summarizing individual spatio-temporal behaviour. In Exploring Geovisualization; Dykes, J., MacEachren, A.M., Kraak, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 181–200. [Google Scholar]
- Andrienko, N.; Andrienko, G.; Gatalsky, P. Exploratory spatio-temporal visualization: An analytical review. J. Vis. Lang. Comput. 2003, 14, 503–541. [Google Scholar] [CrossRef]
- Andrienko, G.; Andrienko, N.; Dykes, J.; Fabrikant, S.I.; Wachowicz, M. Geovisualization of Dynamics, Movement and Change: Key Issues and Developing Approaches in Visualization Research. Inf. Vis. 2008, 7, 173–180. [Google Scholar] [CrossRef]
- Roberts, J.C. Exploratory visualization with multiple linked views. Explor. Geovis. 2005, 159–180. [Google Scholar] [CrossRef]
- Baldonado, M.Q.W.; Woodruff, A.; Kuchinsky, A. Guidelines for Using Multiple Views in Information Visualization. In Proceedings of the Working Conference on Advanced Visual Interfaces; AVI ’00, Palermo, Italy, 24–26 May 2000; ACM: New York, NY, USA, 2000; pp. 110–119. [Google Scholar]
- Sweller, J.; Ayres, P. The split-attention principle in multimedia learning. In The Cambridge Handbook of Multimedia Learning; Cambridge University Press: Cambridge, UK, 2006; pp. 135–146. [Google Scholar]
- Slocum, T.A.; Blok, C.; Jiang, B.; Koussoulakou, A.; Montello, D.R.; Fuhrmann, S.; Hedley, N.R. Cognitive and usability issues in geovisualization. Cartogr. Geogr. Inf. Sci. 2001, 28, 61–75. [Google Scholar] [CrossRef]
- Andrienko, G.; Andrienko, N.; Demsar, U.; Dransch, D.; Dykes, J.; Fabrikant, S.I.; Jern, M.; Kraak, M.-J.; Schumann, H.; Tominski, C. Space, time and visual analytics. Int. J. Geogr. Inf. Sci. 2010, 24, 1577–1600. [Google Scholar] [CrossRef]
- Moore, A. Maps as comics, comics as maps. In Proceedings of the 24th International Cartography Conference (ICC 2009), Santiago, Chile, 15–21 November 2009; pp. 15–21. [Google Scholar]
- Hägerstrand, T. What about people in regional science? Pap. Reg. Sci. Assoc. 1970, 24, 7–21. [Google Scholar] [CrossRef]
- Kraak, M.J. The space-time cube revisited from a geovisualization perspective. In Proceedings of the 21st International Cartographic Conference, Durban, South Africa, 10–16 August 2003; pp. 1988–1996. [Google Scholar]
- Kwan, M.P.; Lee, J. Geovisualization of human activity patterns using 3D GIS: A time-geographic approach. In Spatially Integrated Social Science: Examples in Best Practice; Oxford University Press: Oxford, UK, 2004; Volume 27. [Google Scholar]
- Kwan, M.-P.; Ding, G. Geo-narrative: Extending geographic information systems for narrative analysis in qualitative and mixed-method research. Prof. Geogr. 2008, 60, 443–465. [Google Scholar] [CrossRef]
- Bach, B.; Dragicevic, P.; Archambault, D.; Hurter, C.; Carpendale, S. A Descriptive Framework for Temporal Data Visualizations Based on Generalized Space-Time Cubes. Comput. Graph. Forum 2016, 36, 36–61. [Google Scholar] [CrossRef]
- Munzner, T. Visualization Analysis and Design; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Amini, F.; Henry Riche, N.; Lee, B.; Hurter, C.; Irani, P. Understanding data videos: Looking at narrative visualization through the cinematography lens. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Korea, 18–23 April 2015; pp. 1459–1468. [Google Scholar]
- Kjellin, A.; Pettersson, L.W.; Seipel, S.; Lind, M. Evaluating 2d and 3d visualizations of spatiotemporal information. ACM Trans. Appl. Percept. TAP 2010, 7, 19. [Google Scholar] [CrossRef]
- Kerracher, N.; Kennedy, J.; Chalmers, K. The design space of temporal graph visualisation. In Proceedings of the 18th Eurographics Conference on Visualization - Short Papers (EuroVis ’14), Swansea, Wales, UK, 9–13 June 2014; pp. 7–14. [Google Scholar]
- Busselle, R.; Bilandzic, H. Fictionality and Perceived Realism in Experiencing Stories: A Model of Narrative Comprehension and Engagement. Commun. Theory 2008, 18, 255–280. [Google Scholar] [CrossRef]
- Schreder, G.; Windhager, F.; Smuc, M.; Mayr, E. A Mental Models Perspective on Designing Information Visualizations for Political Communication. JeDEM EJ. EDemocr. Open Gov. 2016, 8, 80–99. [Google Scholar]
- Windhager, F.; Salisu, S.; Schreder, G.; Mayr, E. Orchestrating overviews. A synoptic approach to the visualization of cultural collections. Remaking Collect. Spec. Issue Open Libr. Humanit. 2018. submitted. [Google Scholar]
- Windhager, F.; Federico, P.; Salisu, S.; Schlögl, M.; Mayr, E. A synoptic visualization framework for the multi-perspective study of biography and prosopography data. In Proceedings of the 2nd IEEE VIS Workshop on Visualization for the Digital Humanities (VIS4DH’17), Phoenix, AZ, USA, 2 October 2017. [Google Scholar]
- Ter Braake, S.; Fokkens, A.S.; Sluijter, R.; Declerck, T. (Eds.) BD2015 Proceedings of the 1st Conference on Biographical Data in a Digital World (BD2015); Business Web and Media, Network Institute, Intelligent Information Systems: Amsterdam, The Netherland, 2015. [Google Scholar]
- Wandl-Vogt, E; Lejtovicz, K. (Eds.) Biographical Data in a Digital World 2017. Available online: http://doi.org/10.5281/zenodo.1041978 (accessed on 8 March 2018).
- Bernád, Á.Z.; Kaiser, M.; Mair, S.; Rind, A. Communities in Biographischen Netzwerken [Communities in biographical networks]. In Proceedings of the 10th Forum Media Technology, St. Pölten, Austria, 29–30 November 2017; pp. 83–87. [Google Scholar]
- Kapler, T.; Wright, W. GeoTime information visualization. Inf. Vis. 2005, 4, 136–146. [Google Scholar] [CrossRef]
- Kraak, M.-J.; Kveladze, I. Narrative of the annotated space–time cube–revisiting a historical event. J. Maps 2017, 13, 56–61. [Google Scholar] [CrossRef]
- Kristensson, P.O.; Dahlbäck, N.; Anundi, D.; Björnstad, M.; Gillberg, H.; Haraldsson, J.; Martensson, I.; Nordvall, M.; Staahl, J. An evaluation of space time cube representation of spatiotemporal patterns. IEEE Trans. Vis. Comput. Graph. 2009, 15, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Dodge, S.; Weibel, R.; Lautenschütz, A.K. Towards a taxonomy of movement patterns. Inf. Vis. 2008, 7, 240–252. [Google Scholar] [CrossRef] [Green Version]
- Bennett, K.B.; Flach, J.M. Visual momentum redux. Int. J. Hum.-Comput. Stud. 2012, 70, 399–414. [Google Scholar] [CrossRef]
- Eades, P.; Lai, W.; Misue, K.; Sugiyama, K. Preserving the Mental Map of A Diagram; International Institute for Advanced Study of Social Information Science, Fujitsu Limited: Tokyo, Japan, 1991. [Google Scholar]
- Federico, P.; Aigner, W.; Miksch, S.; Windhager, F.; Smuc, M. Vertigo zoom: Combining relational and temporal perspectives on dynamic networks. In Proceedings of the Working Conference on Advanced Visual Interfaces (AVI2012), Capri Island, Italy, 22–25 May 2012; ACM: New York, NY, USA, 2012; pp. 437–440. [Google Scholar]
- Liu, Z.; Stasko, J.T. Mental Models, Visual Reasoning and Interaction in Information Visualization: A Top-down Perspective. IEEE Trans. Vis. Comput. Graph. 2010, 16, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- MacEachren, A.M.; Kraak, M.-J. Research challenges in geovisualization. Cartogr. Geogr. Inf. Sci. 2001, 28, 3–12. [Google Scholar] [CrossRef]
- Jänicke, S.; Franzini, G.; Cheema, M.F.; Scheuermann, G. Visual text analysis in digital humanities. Comput. Graph. Forum 2017, 36, 226–250. [Google Scholar] [CrossRef]
- Smuc, M.; Windhager, F.; Sari, M.; Federico, P.; Amor-Amoros, A.; Miksch, S. Interweaving pathways of innovation. Visualizing the R&D dynamics of companies provided by patent data. In Proceedings of the XXXV Sunbelt Conference of the International Network for Social Network Analysis, Brighton, UK, 23–28 June 2015; p. 265. [Google Scholar]
- Bradley, A.J. Violence and the digital humanities text as Pharmakon. In Proceedings of the Digital Humanities, Hamburg, Germany, 16–20 July 2012. [Google Scholar]
- Genette, G. Narrative Discourse: An Essay in Method; Cornell University Press: Ithaca, NY, USA, 1983. [Google Scholar]
- Carter, S.; Cox, A.; Bostock, M. Dissecting a Trailer: The Parts of the Film That Make the Cut. Available online: http://www.nytimes.com/interactive/2013/02/19/movies/awardsseason/oscar-trailers.html (accessed on 8 March 2018).
- Kim, N.W.; Bach, B.; Im, H.; Schriber, S.; Gross, M.; Pfister, H. Visualizing Nonlinear Narratives with Story Curves. IEEE Trans. Vis. Comput. Graph. 2018, 24, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Zumbach, J.; Mohraz, M. Cognitive load in hypermedia reading comprehension: Influence of text type and linearity. Comput. Hum. Behav. 2008, 24, 875–887. [Google Scholar] [CrossRef]
- Appel, M.; Richter, T. Persuasive effects of fictional narratives increase over time. Media Psychol. 2007, 10, 113–134. [Google Scholar]
- Roth, R.E.; Çöltekin, A.; Delazari, L.; Filho, H.F.; Griffin, A.; Hall, A.; Korpi, J.; Lokka, I.; Mendonça, A.; Ooms, K. User studies in cartography: Opportunities for empirical research on interactive maps and visualizations. Int. J. Cartogr. 2017, 28, 1–29. [Google Scholar] [CrossRef]
- Mayr, E.; Schreder, G.; Smuc, M.; Windhager, F. Looking at the representations in our mind: Measuring mental models of information visualizations. In Proceedings of the Beyond Time and Errors on Novel Evaluation Methods for Visualization (BELIV ’16), Baltimore, MD, USA, 24 October 2016; pp. 96–103. [Google Scholar]
- McNeill, J.R.; McNeill, W.H. The Human Web: A Bird’s-Eye View of World History; W.W. Norton & Company: New York, NY, USA, 2003; ISBN 978-0-393-05179-7. [Google Scholar]
- Adorno, T.W.; Horkheimer, M. Dialektik der Aufklärung; S. Fischer: Frankfurt, Germany, 1969. [Google Scholar]
- Polti, G. The Thirty-Six Dramatic Situations. Available online: www.pseudology.org/Literature/Polty_George_36_Dramatic_Situations2.pdf (accessed on 20 January 2018).
- Fokkens, A.; ter Braake, S.; Ockeloen, N.; Vossen, P.; Legêne, S.; Schreiber, G.; de Boer, V. BiographyNet: Extracting relations between people and events. In Europa baut auf Biographien: Aspekte, Bausteine, Normen und Standards für Eine Europäische Biographik; New Academic Press: Wien, Austria, 2017; pp. 193–224. [Google Scholar]
- Van Meersbergen, M.; Vossen, P.; van der Zwaan, J.; Fokkens, A.; van Hage, W.; Leemans, I.; Maks, I. Storyteller: Visual analytics of perspectives on rich text interpretations. In Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism, Copenhagen, Denmark, 7 September 2017; pp. 37–45. [Google Scholar]
- Kucher, K.; Paradis, C.; Kerren, A. The state of the art in sentiment visualization. Comput. Graph. Forum 2017, 37, 71–96. [Google Scholar] [CrossRef]
Coordinated Views | Animation/Slideshow | Layer Superimposition | Layer Juxtaposition | Space–Time Cube | |
---|---|---|---|---|---|
Strengths |
|
|
|
|
|
Limitations |
|
|
|
|
|
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayr, E.; Windhager, F. Once upon a Spacetime: Visual Storytelling in Cognitive and Geotemporal Information Spaces. ISPRS Int. J. Geo-Inf. 2018, 7, 96. https://doi.org/10.3390/ijgi7030096
Mayr E, Windhager F. Once upon a Spacetime: Visual Storytelling in Cognitive and Geotemporal Information Spaces. ISPRS International Journal of Geo-Information. 2018; 7(3):96. https://doi.org/10.3390/ijgi7030096
Chicago/Turabian StyleMayr, Eva, and Florian Windhager. 2018. "Once upon a Spacetime: Visual Storytelling in Cognitive and Geotemporal Information Spaces" ISPRS International Journal of Geo-Information 7, no. 3: 96. https://doi.org/10.3390/ijgi7030096
APA StyleMayr, E., & Windhager, F. (2018). Once upon a Spacetime: Visual Storytelling in Cognitive and Geotemporal Information Spaces. ISPRS International Journal of Geo-Information, 7(3), 96. https://doi.org/10.3390/ijgi7030096