DASSCAN: A Density and Adjacency Expansion-Based Spatial Structural Community Detection Algorithm for Networks
Abstract
:1. Introduction and Motivations
2. Materials and Methods
2.1. Spatial Network Modeling
2.2. DASSCAN Algorithm
2.3. Computational Complexity and Efficiency Analysis
3. Experimental Results
3.1. A Small Sample Network Experiment
3.2. A Large Train Network Data Experiment
4. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Barthélemy, M. Spatial networks. Phys. Rep. 2011, 499, 1–101. [Google Scholar] [CrossRef]
- Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [Google Scholar] [CrossRef]
- Liu, X.; Gong, L.; Gong, Y.X.; Liu, Y. Revealing travel patterns and city structure with taxi trip data. J. Transp. Geogr. 2015, 43, 78–90. [Google Scholar] [CrossRef]
- Austwick, M.Z.; O’Brien, O.; Strano, E.; Viana, M. The structure of spatial networks and communities in bicycle sharing systems. PLoS ONE 2013, 8, e74685. [Google Scholar] [CrossRef]
- Gao, S.; Liu, Y.; Wang, Y.L.; Ma, X.J. Discovering Spatial Interaction Communities from Mobile Phone Data. Trans. GIS 2013, 17(3), 463–481. [Google Scholar] [CrossRef]
- Liu, Y.; Sui, Z.; Kang, C.; Gao, Y. Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data. PLoS ONE 2014, 9, e86026. [Google Scholar] [CrossRef] [PubMed]
- Guimera, R.; Mossa, S.; Turtschi, A.; Amaral, L.N. The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles. Proc. Natl. Acad. Sci. USA 2005, 102, 7794–7799. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, J.; Xu, M. Finding community structure in spatially constrained complex networks. Int. J. Geogr. Inf. Sci. 2015, 29, 889–911. [Google Scholar] [CrossRef]
- Ji, Y.; Geroliminis, N. On the spatial partitioning of urban transportation networks. Transp. Res. Part B Methodol. 2012, 46, 1639–1656. [Google Scholar] [CrossRef]
- Anwar, T.; Liu, C.; Vu, H.L.; Leckie, C. Spatial Partitioning of Large Urban Road Networks. In Proceedings of the 17th Inter-National Conference on Extending Database Technology (EDBT), Athens, Greece, 24–28 March 2014; pp. 343–354. [Google Scholar]
- Anwar, T.; Liu, C.; Vu, H.L.; Leckie, C. Partitioning road networks using density peak graphs: Efficiency vs. accuracy. Inf. Syst. 2017, 64, 22–40. [Google Scholar] [CrossRef]
- Barber, M.J.; Fischer, M.M.; Scherngell, T. The community structure of research and development cooperation in Europe: evidence from a social network perspective. Geogr. Anal. 2011, 43, 415–432. [Google Scholar] [CrossRef] [Green Version]
- Guo, D. Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP). Int. J. Geogr. Inf. Sci. 2008, 22, 801–823. [Google Scholar] [CrossRef]
- Guo, D. Flow mapping and multivariate visualization of large spatial interaction data. IEEE Trans. Vis. Comput. Graph. 2009, 15. [Google Scholar] [CrossRef]
- Expert, P.; Evans, T.S.; Blondel, V.D.; Lambiotte, R. Uncovering space-independent communities in spatial networks. Proc. Natl. Acad. Sci. USA 2011, 108, 7663–7668. [Google Scholar] [CrossRef] [PubMed]
- Cerina, F.; De Leo, V.; Barthelemy, M.; Chessa, A. Spatial Correlations in Attribute Communities. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Murata, T.; Wakita, K. Extending Modularity by Incorporating Distance Functions in the Null Model. arXiv 2012, arXiv:1210.4007. [Google Scholar]
- Hannigan, J.; Hernandez, G.; Medina, R.M.; Roos, P.; Shakarian, P. Mining for spatially-near communities in geo-located social networks. In Proceedings of the Association for the Advancement of Artificial Intelligence-Social Networks and Social Contagion: Web Analytics and Computational Social Science, Arlington, VA, USA, 15–17 November 2013. [Google Scholar]
- Shakarian, P.; Roos, P.; Callahan, D.; Kirk, C. Mining for geographically disperse communities in social networks by leveraging distance modularity. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, UK, 19–23 August 2018; pp. 1402–1409. [Google Scholar]
- Sarzynska, M.; Leicht, E.A.; Chowell, G.; Porter, M.A. Null models for community detection in spatially embedded, temporal networks. J. Complex Netw. 2015, 4, 363–406. [Google Scholar] [CrossRef]
- Cazabet, R.; Borgnat, P.; Jensen, P. Enhancing space-aware community detection using degree constrained spatial null model. In Proceedings of the Workshop on Complex Networks CompleNet, Dubrovnik, Croatia, 21–24 March 2017; pp. 47–55. [Google Scholar]
- Newman, M.E. Fast algorithm for detecting community structure in networks. Phys. Rev. E 2004, 69, 066133. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.E.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113. [Google Scholar] [CrossRef] [PubMed]
- Bakillah, M.; Li, R.Y.; Liang, S.H.L. Geo-located community detection in Twitter with enhanced fast-greedy optimization of modularity: the case study of typhoon Haiyan. Int. J. Geogr. Inf. Sci. 2015, 29, 258–279. [Google Scholar] [CrossRef]
- Good, B.H.; de Montjoye, Y.-A.; Clauset, A. Performance of modularity maximization in practical contexts. Phys. Rev. E 2010, 81, 046106. [Google Scholar] [CrossRef] [PubMed]
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef]
- Sobolevsky, S.; Campari, R.; Belyi, A.; Ratti, C. General optimization technique for high-quality community detection in complex networks. Phys. Rev. E 2014, 90, 012811. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yuruk, N.; Feng, Z.; Schweiger, T.A. Scan: A structural clustering algorithm for networks. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, CA, USA, 12–15 August 2007; pp. 824–833. [Google Scholar]
- Scripps, J.; Tan, P.-N.; Esfahanian, A.-H. Node roles and community structure in networks. In Proceedings of the 9th WebKDD and 1st SNA-KDD Workshop on Web Mining and Social Network Analysis, San Jose, CA, USA, 12–15 August 2007; pp. 26–35. [Google Scholar]
- Papadopoulos, S.; Kompatsiaris, Y.; Vakali, A.; Spyridonos, P. Community detection in social media. Data Min. Knowl. Discov. 2012, 24, 515–554. [Google Scholar] [CrossRef]
- Tiedaobu. Available online: http://www.12306.cn/mormhweb/ (accessed on 20 March 2018).
- Seaton, K.A.; Hackett, L.M. Stations, trains and small-world networks. Phys. A Stat. Mech. Its Appl. 2004, 339, 635–644. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD), Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th International Conference on World Wide Web, Hong Kong, China, 1–5 May 2001; pp. 285–295. [Google Scholar]
- Aggarwal, C.C. Recommender Systems; Springer: Berlin, Germany, 2016. [Google Scholar]
- Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN. ACM Trans. Database Syst. 2017, 42. [Google Scholar] [CrossRef]
- Sander, J.; Ester, M.; Kriegel, H.-P.; Xu, X. Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data Min. Knowl. Discov. 1998, 2, 169–194. [Google Scholar] [CrossRef]
- NetworkX. Available online: https://networkx.github.io/ (accessed on 20 March 2018).
Train Number | Train Type | Nodes |
---|---|---|
C1001 | Intercity high-speed train | Changchun, Jilin, Yanbian. |
G1 | High-speed train | Beijing, Nanjing, Shanghai. |
Network | Cities/Nodes | Connections | Average Degree of Node | Average Adjacent Cities for Each Node |
---|---|---|---|---|
C-net | 35 | 98 | 2.8 | 2.2 |
G-net | 159 | 10,040 | 63.1 | 3.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Y.; Liu, Y. DASSCAN: A Density and Adjacency Expansion-Based Spatial Structural Community Detection Algorithm for Networks. ISPRS Int. J. Geo-Inf. 2018, 7, 159. https://doi.org/10.3390/ijgi7040159
Wan Y, Liu Y. DASSCAN: A Density and Adjacency Expansion-Based Spatial Structural Community Detection Algorithm for Networks. ISPRS International Journal of Geo-Information. 2018; 7(4):159. https://doi.org/10.3390/ijgi7040159
Chicago/Turabian StyleWan, You, and Yaolin Liu. 2018. "DASSCAN: A Density and Adjacency Expansion-Based Spatial Structural Community Detection Algorithm for Networks" ISPRS International Journal of Geo-Information 7, no. 4: 159. https://doi.org/10.3390/ijgi7040159
APA StyleWan, Y., & Liu, Y. (2018). DASSCAN: A Density and Adjacency Expansion-Based Spatial Structural Community Detection Algorithm for Networks. ISPRS International Journal of Geo-Information, 7(4), 159. https://doi.org/10.3390/ijgi7040159