Suitability Evaluation of Urban Construction Land Based on an Approach of Vertical-Horizontal Processes
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.3. Urban Construction Land Suitability Analysis Based on the Potential-Resistance (PR) Model
2.3.1. Analysis of the Urban Development and Construction Potential
- The first step involved comparing the degree of importance to urban planning between two single indices using a Delphi method and assessing the factors on a 1–9 scale. For our research, we consulted 10 experts in the fields of environmental science, geography, urban and rural planning, and ecology from the academy of the authors, planning institution and functional departments of Jining municipal government. (Table 2).
- The second step involved constructing a judgment matrix and calculating the eigenvalue of each factor.
- The third step involved calculating the weight of each factor and performing a consistency check.
2.3.2. Analysis of the Ecological Constraint Resistance
2.3.3. Urban Construction Land Suitability Analysis Based on the Potential-Resistance Model
2.4. Urban Construction Land Suitability Regionalization Based on the MCR Model
3. Results
3.1. Suitability Analysis for Urban Construction Land
3.1.1. Analysis of Urban Development and the Construction Potential
3.1.2. Analysis of Urban Development and Construction Resistance
3.1.3. Urban Construction Land Suitability Analysis based on Vertical Processes
3.2. Comprehensive Suitability Regionalization for Urban Construction Land
4. Discussion
4.1. Innovations and Inspirations for Local Development Strategies
- (1)
- The evaluation factors of construction land suitability on vertical processes were divided into potential factors and resistance factors, and the suitability was evaluated based on PR model.
- (2)
- As urban expansion is a typically horizontal process, this paper highlighted the integration of vertical and horizontal processes linking the PR and MCR models for construction land suitability evaluation. The evaluation results may be more instructive for site selection and planning of urban construction land, and it is beneficial to guide the urban development in the direction of multi-center and group.
- (3)
- Traditional evaluation results are similar to the suitability analysis results in this study (Figure 5). Although many areas seem to be suitable for construction, they are not appropriate for actual development and construction due to the lack of infrastructure and matching industries. This is a common problem in many new cities which leads them to be ghost or sleeping cities.
4.2. Limitations and Prospects of Our Research
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.C.; Bonan, G.; Carpenter, S.R.; Stuart Chapin, R., III; Coe, M.T.; Daily, G.C.; Gibbs, H.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, W.; Wang, W.; Xiong, Y. Research on space modeling for minimum urban ecological land based on GIS: A case in Shenzhen. J. Nat. Resour. 2008, 23, 69–78. [Google Scholar]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.; Parurlo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Radford, K.G.; James, P. Changes in the value of ecosystem services along a rural–urban gradient: A case study of Greater Manchester, UK. Landsc. Urban Plan. 2013, 109, 117–127. [Google Scholar] [CrossRef]
- Haas, J.; Ban, Y. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta. Int. J. Appl. Earth Obs. 2014, 30, 42–55. [Google Scholar] [CrossRef]
- Hopkins, L.D. Methods for generating land suitability maps: A comparative evaluation. J. Am. Inst. Plan. 1977, 43, 386–400. [Google Scholar] [CrossRef]
- Collins, M.G.; Steiner, F.R.; Rushman, M.J. Land-use suitability analysis in the United States: Historical development and promising technological achievements. Environ. Manag. 2001, 28, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Malczewski, J. GIS-based land-use suitability analysis: A critical overview. Prog. Plan. 2004, 62, 3–65. [Google Scholar] [CrossRef]
- Klosterman, R.E. The what if? Collaborative planning support system. Environ. Plan. B 1999, 26, 393–408. [Google Scholar] [CrossRef]
- Burian, J.; Stastny, S.; Brus, J.; Pechanec, V.; Vozenilek, V. Urban Planner: Model for optimal land use scenario modelling. Geografie 2015, 120, 330–353. [Google Scholar]
- Zhang, J.; Su, Y.; Wu, J.; Liang, H. GIS based land suitability assessment for tobacco production using AHP and fuzzy set in Shandong province of China. Comput. Electron. Agric. 2015, 114, 202–211. [Google Scholar] [CrossRef]
- Zabihi, H.; Ahmad, A.; Vogeler, I.; Said, M.; Golmohammadi, M.; Golein, B.; Nilashi, M. Land suitability procedure for sustainable citrus planning using the application of the analytical network process approach and GIS. Comput. Electron. Agric. 2015, 117, 114–126. [Google Scholar] [CrossRef]
- Yan, B.; Shi, W.; Yan, J.; Chun, K. Spatial distribution of livestock and poultry farm based on livestock manure nitrogen load on farmland and suitability evaluation. Comput. Electron. Agric. 2017, 139, 180–186. [Google Scholar] [CrossRef]
- Díaz, I.; Mello, A.L.; Salhi, M.; Spinetti, M.; Bessonart, M. Multiscalar land suitability assessment for aquaculture production in Uruguay. Aquac. Res. 2017, 48, 3052–3065. [Google Scholar] [CrossRef]
- Bello-Pineda, J.; Ponce-Hernández, R.; Liceaga-Correa, M.A. Incorporating GIS and MCE for suitability assessment modelling of coral reef resources. Environ. Monit. Assess. 2006, 114, 225–256. [Google Scholar] [CrossRef] [PubMed]
- Reshmidevi, T.V.; Eldho, T.I.; Jana, R. A GIS-integrated fuzzy rule-based inference system for land suitability evaluation in agricultural watersheds. Agric. Syst. 2009, 101, 101–109. [Google Scholar] [CrossRef]
- Halder, J.C. Land suitability assessment for crop cultivation by using remote sensing and GIS. J. Geogr. Geol. 2013, 5, 65. [Google Scholar] [CrossRef]
- Sarkar, S.; Dyer, J.S.; Margules, C.; Ciarleglio, M.; Kemp, N.; Wong, G.; Juhn, D.; Supriatna, J. Developing an objectives hierarchy for multicriteria decisions on land use options, with a case study of biodiversity conservation and forestry production from Papua, Indonesia. Environ. Plan. B 2017, 44, 464–485. [Google Scholar] [CrossRef]
- Fan, C.; Shen, S.; Wang, S.; She, G.; Wang, X. Research on urban land ecological suitability evaluation based on gravity-resistance model: A case of Deyang city in China. Procedia Eng. 2011, 21, 676–685. [Google Scholar]
- Liu, R.; Zhang, K.; Zhang, Z.; Borthwick, A. Land-use suitability analysis for urban development in Beijing. J. Environ. Manag. 2014, 145, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, S.; Pradhan, B.; Mansor, S.; Shariff, A. GIS-based modeling for the spatial measurement and evaluation of mixed land use development for a compact city. Mapp. Sci. Remote Sens. 2015, 52, 18–39. [Google Scholar] [CrossRef]
- Mosadeghi, R.; Warnken, J.; Tomlinson, R.; Mirfenderesk, H. Comparison of Fuzzy-AHP and AHP in a spatial multi-criteria decision making model for urban land-use planning. Comput. Environ. Urban Syst. 2015, 49, 54–65. [Google Scholar] [CrossRef]
- Romano, G.; Dal Sasso, P.; Liuzzi, G.T.; Gentile, F. Multi-criteria decision analysis for land suitability mapping in a rural area of Southern Italy. Land Use Policy 2015, 48, 131–143. [Google Scholar] [CrossRef]
- Delgado, O.B.; Mendoza, M.; Granados, E.L.; Geneletti, D. Analysis of land suitability for the siting of inter-municipal landfills in the Cuitzeo Lake Basin, Mexico. Waste Manag. 2008, 28, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Azizi, A.; Malekmohammadi, B.; Jafari, H.; Nasiri, H.; Parsa, V. Land suitability assessment for wind power plant site selection using ANP-DEMATEL in a GIS environment: Case study of Ardabil province, Iran. Environ. Monit. Assess. 2014, 186, 6695–6709. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.J.W.; Hudson, M.D. Regional Scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landsc. Urban Plan. 2015, 138, 20–31. [Google Scholar] [CrossRef]
- Bagdanavičiūtė, I.; Valiūnas, J. GIS-based land suitability analysis integrating multi-criteria evaluation for the allocation of potential pollution sources. Environ. Earth Sci. 2013, 68, 1797–1812. [Google Scholar] [CrossRef]
- Uy, P.D.; Nakagoshi, N. Application of land suitability analysis and landscape ecology to urban greenspace planning in Hanoi, Vietnam. Urban For. Urban Green. 2008, 7, 25–40. [Google Scholar] [CrossRef]
- Bonham-Carter, G.F. Geographic Information Systems for geoscientists-modeling with GIS. In Computer Methods in the Geoscientists; Elsevier Ltd.: Amsterdam, The Netherlands, 1994; Volume 13, p. 398. [Google Scholar]
- He, Y.; Chen, Y.; Yang, P.; Wu, W.; Yao, Y.; Li, Z. An overview and perspective of alien land suitability evaluation study based on GIS technology. Prog. Geogr. 2010, 28, 898–904. (In Chinese) [Google Scholar]
- Malczewski, J. Chapter 3: Introduction to multicriteria decision analysis. In GIS and Multicriteria Decision Analysis; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 1999; pp. 65–91. [Google Scholar]
- Malczewski, J. On the use of weighted linear combination method in GIS: Common and best practice approaches. Trans. GIS 2000, 4, 5–22. [Google Scholar] [CrossRef]
- Akıncı, H.; Özalp, A.Y.; Turgut, B. Agricultural land use suitability analysis using GIS and AHP technique. Comput. Electron. Agric. 2013, 97, 71–82. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Khan, S. Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environ. Model. Softw. 2010, 25, 1582–1591. [Google Scholar] [CrossRef]
- Malczewski, J. A GIS-based approach to multiple criteria group decision-making. Int. J. Geogr. Inf. Sci. 1996, 10, 955–971. [Google Scholar] [CrossRef]
- Malczewski, J.; Chapman, T.; Flegel, C.; Walters, D.; Shrubsole, D.; Martin, H. GIS-multicriteria evaluation with ordered weighted averaging (OWA): Case study of developing watershed management strategies. Environ. Plan. A 2003, 35, 1769–1784. [Google Scholar] [CrossRef]
- Malczewski, J. Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. Int. J. Appl. Earth Obs. 2006, 8, 270–277. [Google Scholar] [CrossRef]
- Yu, K.J. Landscape ecological security patterns in biological conservation. Acta Ecol. Sin. 1999, 19, 8–15. (In Chinese) [Google Scholar]
- Kercher, J.R.; Axelrod, M.C. A Process Model of fire ecology and succession in a mixed-conifer forest. Ecology 1984, 65, 1725–1742. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N.; Zong, Y. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landsc. Urban Plan. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- Li, W.; Chen, Q.; Cai, D.; Li, R. Determination of an appropriate ecological hydrograph for a rare fish species using an improved fish habitat suitability model introducing landscape ecology index. Ecol. Model. 2015, 311, 31–38. [Google Scholar] [CrossRef]
- Jordán, F.; Báldi, A.; Orci, K.M.; Racz, I.; Varga, Z. Characterizing the importance of habitat patches and corridors in maintaining the landscape connectivity of a Pholidoptera transsylvanica (Orthoptera) metapopulation. Landsc. Ecol. 2003, 18, 83–92. [Google Scholar] [CrossRef]
- Knaapen, J.P.; Scheffer, M.; Harms, B. Estimating habitat isolation in landscape planning. Landsc. Urban Plan. 1992, 23, 1–16. [Google Scholar] [CrossRef]
- Li, F.; Ye, Y.; Song, B.; Wang, R. Evaluation of urban suitable ecological land based on the minimum cumulative resistance model: A case study from Changzhou, China. Ecol. Model. 2015, 318, 194–203. [Google Scholar] [CrossRef]
- Dong, J.; Dai, W.; Shao, G.; Xu, J. Ecological network construction based on minimum cumulative resistance for the city of Nanjing, China. ISPRS Int. J. Geo-Inf. 2015, 4, 2045–2060. [Google Scholar] [CrossRef]
- Liu, G.; Liang, Y.; Cheng, Y.; Wang, H.; Yi, L. Security patterns and resistance surface model in urban development: Case study of Sanshui, China. J. Urban Plan. Dev. 2017, 143, 05017011. [Google Scholar] [CrossRef]
- Parks, S.A.; McKelvey, K.S.; Schwartz, M.K. Effects of weighting schemes on the identification of wildlife corridors generated with least-cost methods. Conserv. Biol. 2013, 27, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Li, Y.; Hu, Y.; Su, H.; Wang, J. Spatiotemporal differentiation of construction land expansion in a typical town of south Jiangsu Province. Chin. J. Appl. Ecol. 2011, 22, 217–224. (In Chinese) [Google Scholar]
- Jining Statistical Bureau. Jining Statistical Yearbook; China Statistics Press: Beijing, China, 2015; pp. 37–40.
- Yin, D.; Qian, J.; Zhu, H. Living in the “Ghost City”: Media Discourses and the Negotiation of Home in Ordos, Inner Mongolia, China. Sustainability 2017, 9, 2029. [Google Scholar] [CrossRef]
- Mustafa, A.; Heppenstall, A.; Omrani, H.; Saadi, I.; Cools, M.; Teller, J. Modelling built-up expansion and densification with multinomial logistic regression, cellular automata and genetic algorithm. Comput. Environ. Urban Syst. 2018, 67, 147–156. [Google Scholar] [CrossRef]
- Li, G.; Sun, S.; Fang, C. The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis. Landsc. Urban Plan. 2018, 174, 63–77. [Google Scholar] [CrossRef]
- Vladica, R.; Marija, M.; Marina, N.; Jelena, B. Land-use evaluation for sustainable construction in a protected area: A case of Sara mountain national park. J. Environ. Manag. 2018, 206, 430–445. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill International: New York, NY, USA, 1980. [Google Scholar]
- Zong, Y.; Wang, R.; Wang, C.; Wang, H.; Zhang, L. Ecological suitability assessment on land use based on potential-constrain approach: The case of urbanized areas in Dalian city, China. Geogr. Res. 2007, 26, 1117–1127. (In Chinese) [Google Scholar]
- Adriaensen, F.; Chardon, J.P.; De Blust, G.; Swinnen, E.; Villalba, S.; Gulinck, H.; Matthysen, E. The application of “least-cost” modeling as a functional landscape model. Landsc. Urban Plan. 2003, 64, 233–247. [Google Scholar] [CrossRef]
- Martellozzo, F.; Amato, F.; Murgante, B.; Clarke, K. Modelling the impact of urban growth on agriculture and natural land in Italy to 2030. Appl. Geogr. 2018, 91, 156–167. [Google Scholar] [CrossRef]
- Xu, K.; Kong, C.; Li, J.; Zhang, L. GEO-environmental suitability evaluation of land for urban construction based on a back-propagation neural network and GIS: A case study of Hangzhou. Phys. Geogr. 2012, 33, 457–472. [Google Scholar] [CrossRef]
- Ye, Y.; Su, Y.; Zhang, H.; Liu, K.; Wu, Q. Construction of an ecological resistance surface model and its application in urban expansion simulations. J. Geogr. Sci. 2015, 25, 211–224. [Google Scholar] [CrossRef]
- Kursah, M.B. Least-cost pipeline using geographic information system: The limit to technicalities. Int. J. Appl. Geospat. Res. 2017, 8, 1–15. [Google Scholar] [CrossRef]
- ESRI (Environmental Systems Research Institute). Cell-Based Modeling with Grid; Environmental Systems Research Institute Inc.: Redlands, CA, USA, 1994. [Google Scholar]
- Li, Q.; Huang, J.; Wang, C.; Lin, H.; Zhang, J.; Jiang, J.; Wang, B. Land Development Suitability Evaluation of Pingtan Island Based on Scenario Analysis and Landscape Ecological Quality Evaluation. Sustainability 2017, 9, 1292. [Google Scholar] [CrossRef]
- Yu, K.J.; Duan, T.W.; Li, D.H.; Peng, J.F. Landscape accessibility as a measurement of the function of urban green system. City Plan. Rev. 1999, 8, 8–44. (In Chinese) [Google Scholar]
- Jin, X.; Long, Y.; Sun, W.; Lu, Y.; Yang, X.; Tang, J. Evaluating cities’ vitality and identifying ghost cities in China with emerging geographical data. Cities 2017, 63, 98–109. [Google Scholar] [CrossRef]
- Saatsaz, M.; Monsef, I.; Rahmani, M.; Ghods, A. Site suitability evaluation of an old operating landfill using AHP and GIS techniques and integrated hydrogeological and geophysical surveys. Environ. Monit. Assess. 2018, 190, 144. [Google Scholar] [CrossRef] [PubMed]
- Firman, T. New town development in Jakarta Metropolitan Region: A perspective of spatial segregation. Habitat Int. 2004, 28, 349–368. [Google Scholar] [CrossRef]
- Hui, E.; Lam, M. A study of commuting patterns of new town residents in Hong Kong. Habitat Int. 2005, 29, 421–437. [Google Scholar] [CrossRef]
- Desponds, D.; Auclair, E. The new towns around Paris 40 years later: New dynamic centralities or suburbs facing risk of marginalisation? Urban Stud. 2017, 54, 107–134. [Google Scholar] [CrossRef]
- Qiu, L.; Zhu, J.; Pan, Y.; Hu, W.; Amable, G. Multi-criteria land use suitability analysis for livestock development planning in Hangzhou metropolitan area, China. J. Clean. Prod. 2017, 161, 1011–1019. [Google Scholar] [CrossRef]
- Hamid, M.; Mohammad, S. An Agent-Based Modeling approach for sustainable urban planning from land use and public transit perspectives. Cities 2018, 3, 1–10. [Google Scholar]
- Zeynel, A.; Mehmet, A.; Hicert, G. Determining strategies for the cadastre 2034 vision using an AHP-Based SWOT analysis: A case study for the turkish cadastral and land administration system. Land Use Policy 2017, 67, 151–166. [Google Scholar]
- Lu, Y.; Xu, H.; Wang, Y.; Yang, Y. Evaluation of water environmental carrying capacity of city in Huaihe River Basin based on the AHP method: A case in Huai’an City. Water Resour. Ind. 2017, 18, 71–77. [Google Scholar] [CrossRef]
- Kalogirou, S. Expert systems and GIS: An application of land suitability evaluation. Comput. Environ. Urban 2002, 26, 89–112. [Google Scholar] [CrossRef]
Factors | Classification | Assigned Value (Xip) | |
---|---|---|---|
D_MR | National road | 0~66 m buffer zone | 0 |
Provincial road | 0~66 m buffer zone | ||
Railway | 0~55 m buffer zone | ||
Urban main road | 0~50 m buffer zone | ||
Distance to green belt of roads | 0~200 m | 9 | |
200~500 m | 7 | ||
500~1000 m | 5 | ||
Greater than 1000 m | 1 | ||
D_B | 0~1000 m | 9 | |
1000~2000 m | 7 | ||
2000~3000 m | 5 | ||
Greater than 3000 m | 3 | ||
LU | natural reserve areas | 0 | |
woodland, wet land | 1 | ||
garden plots | 3 | ||
farmland | 5 | ||
rural construction land, independent industrial and mining land | 7 | ||
urban construction land | 9 |
Experts’ ID | Majors or Research Interests | Affiliation |
---|---|---|
1 | Environmental science | Fudan University |
2 | Ecology | Fudan University |
3 | Geography | Shanghai Normal University |
4 | Ecology | Shanghai Normal University |
5 | Urban and rural planning | Urban planning and architectural design institute of Fudan University |
6 | Urban and rural planning | Urban planning and architectural design institute of Fudan University |
7 | Geography | Jining Urban and Rural Planning Bureau |
8 | Urban and rural planning | Jining Urban and Rural Planning Bureau |
9 | Land resource management | Jining Land and Resources Bureau |
10 | Environmental management | Jining Water Conservancy Bureau |
Factors | Classification | Assigned Value (Xir) | |
---|---|---|---|
Topography | Less than 32.5 m | 9 | |
32.5–34.2 m | 7 | ||
34.2–34.5 m | 5 | ||
34.5–36 m | 3 | ||
Greater than 36 m | 1 | ||
D_MR | Guangfu River | 0~150 m buffer zone | 0 |
The Beijing-Hangzhou Grand Canal | 0~200 m buffer zone | ||
Xiaobei Lake & Nansi Lake | 0~200 m buffer zone | ||
Other rivers | 0~40 m buffer zone | ||
Distance to green belt of water system | 0~100 m | 9 | |
100~200 m | 7 | ||
200~500 m | 5 | ||
Greater than 500 m | 1 | ||
CR | Areas with covered coal resources | 3 | |
Other areas | 1 | ||
CM | Current coal mining subsidence areas | 9999 | |
Coal mining subsidence areas in 2020 (predicted) | 5 | ||
Other areas | 1 | ||
WP | Core area of ground-level and underground water source conservation area | 9999 | |
Other areas | 1 | ||
CS | Absolute protection coverage | 9 | |
Construction control zone | 7 | ||
Landscape coordination area | 5 | ||
Other areas | 1 | ||
BF | Basic farmland preservation zone | 9999 | |
Other areas | 0 |
Land-Use Category | Suitability for Construction | Area (km2) | Proportion (%) |
---|---|---|---|
Construction-suitable land use | Priority areas | 158.75 | 16.55 |
Suitable areas | 151.62 | 15.81 | |
Ecologically suitable land use | Restricted areas | 123.57 | 12.89 |
Prohibited areas | 524.94 | 54.75 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Zhou, R.; Ye, X.; Zhang, H.; Wang, X. Suitability Evaluation of Urban Construction Land Based on an Approach of Vertical-Horizontal Processes. ISPRS Int. J. Geo-Inf. 2018, 7, 198. https://doi.org/10.3390/ijgi7050198
Yan Y, Zhou R, Ye X, Zhang H, Wang X. Suitability Evaluation of Urban Construction Land Based on an Approach of Vertical-Horizontal Processes. ISPRS International Journal of Geo-Information. 2018; 7(5):198. https://doi.org/10.3390/ijgi7050198
Chicago/Turabian StyleYan, Yuetian, Rui Zhou, Xinyue Ye, Hao Zhang, and Xinjun Wang. 2018. "Suitability Evaluation of Urban Construction Land Based on an Approach of Vertical-Horizontal Processes" ISPRS International Journal of Geo-Information 7, no. 5: 198. https://doi.org/10.3390/ijgi7050198
APA StyleYan, Y., Zhou, R., Ye, X., Zhang, H., & Wang, X. (2018). Suitability Evaluation of Urban Construction Land Based on an Approach of Vertical-Horizontal Processes. ISPRS International Journal of Geo-Information, 7(5), 198. https://doi.org/10.3390/ijgi7050198