Trend Analysis of Relationship between Primary Productivity, Precipitation and Temperature in Inner Mongolia
Abstract
:1. Introduction
2. Data and Method
2.1. The Study Area
2.2. The Data and Pre-Processing
2.3. The Analysis Method
- Create the top and bottom envelope with the cubic splines fitted by maximums and minimums extras of x(t).
- Calculate the mean of envelopes: mean(t) = 0.5 × (emax(t) + emin(t)) (where e stands for envelop)
- Extract the mean value out: x’(t) = x(t) − mean(t)
- Repeat previous steps until stopping criteria are met and then extract out the intrinsic mode function (IMF): IMF = x(t) − ∑(mean(t))
- Extract IMF out of x(t): x′ = x(t) − IMF
- Repeat Steps 1–5 until the criterion that it cannot extract IMFs is met.
- The residual is what is left: Residual = x(t) − ∑(IMF)
3. Results
3.1. The Result form Empirical Mode Decomposition (EMD)
3.2. Partial Effect of Precipitation and Temperature on Productivity at Regional Scale
3.3. Partial Effect of Precipitation and Temperature on Productivity over Different Types of Vegetation Across Two Climate Zones
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bao, G.; Qin, Z.; Bao, Y.; Zhou, Y.; Li, W.; Sanjjav, A. NDVI-based long-term vegetation dynamics and its response to climatic change in the Mongolian plateau. Remote Sens. 2014, 6, 8337–8358. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Wang, W.; Bao, G. NDVI, temperature and precipitation changes and their relationships with different vegetation types during 1998–2007 in Inner Mongolia, China. Int. J. Climatol. 2013, 33, 1696–1706. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, J.; Xing, Q.; Pan, Q.; Huang, J.; Yang, D.; Han, X. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology 2008, 89, 2140–2153. [Google Scholar] [CrossRef] [PubMed]
- Balling, R.C.; Klopatek, J.M.; Hildebrandt, M.L.; Moritz, C.K.; Watts, C.J. Impacts of land degradation on historical temperature records from the Sonoran desert. Clim. Change 1998, 40, 669–681. [Google Scholar] [CrossRef]
- Grime, J.P.; Fridley, J.D.; Askew, A.P.; Thompson, K.; Hodgson, J.G.; Bennett, C.R. Long-term resistance to simulated climate change in an infertile grassland. Proc. Natl. Acad. Sci. USA 2008, 105, 10028–10032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pielke, R.; Schimel, D.; Lee, T.; Kittel, T.; Zeng, X. Atmosphere-terrestrial ecosystem interactions: Implications for coupled modeling. Ecol. Model. 1993, 67, 5–18. [Google Scholar] [CrossRef]
- Piras, M.; Mascaro, G.; Deidda, R.; Vivoni, E.R. Impacts of climate change on precipitation and discharge extremes through the use of statistical downscaling approaches in a Mediterranean basin. Sci. Total Environ. 2016, 543, 952–964. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Ito, Y.; Kawamura, K.; Ishikawa, N.; Goto, M.; Wulan, T.; Alateng, D.; Yin, T. MODIS NDVI and vegetation phenology dynamics in the Inner Mongolia grassland. Solid Earth Discuss. 2015, 7. [Google Scholar] [CrossRef]
- Li, S.; Xie, Y.; Brown, D.G.; Bai, Y.; Hua, J.; Judd, K. Spatial variability of the adaptation of grassland vegetation to climatic change in Inner Mongolia of China. Appl. Geogr. 2013, 43, 1–12. [Google Scholar] [CrossRef]
- Xie, Y.; zhang, Y.; Lan, H.; Mao, L.; Zeng, S.; Chen, Y. Investigating long-term trends of climate change and their spatial variations caused by regional and local environments through data mining. J. Geogr. Sci. 2018, 28, 802–818. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Shiyomi, M.; Akiyama, T.; Wang, S.; Hori, Y.; Chen, Z.; Yasuda, T.; Kawamura, K.; Yamamura, Y. A grassland ecosystem model of the Xilingol steppe, Inner Mongolia, China. Ecol. Model. 2011, 222, 2073–2083. [Google Scholar] [CrossRef]
- Xie, Y.; Crary, D.; Bai, Y.; Cui, X.; Zhang, A. Modeling grassland ecosystem responses to coupled climate and socioeconomic influences in multi-spatial-and-temporal scales. J. Environ. Inform. 2017. [Google Scholar] [CrossRef]
- Damsø, T.; Kjær, T.; Christensen, T.B. Local climate action plans in climate change mitigation: examining the case of Denmark. Energy Policy 2016, 89, 74–83. [Google Scholar] [CrossRef]
- Chen, L.; Li, H.; Zhang, P.; Zhao, X.; Zhou, L.; Liu, T.; Hu, H.; Bai, Y.; Shen, H.; Fang, J. Climate and native grassland vegetation as drivers of the community structures of shrub-encroached grasslands in Inner Mongolia, China. Landsc. Ecol. 2015, 30, 1627–1641. [Google Scholar] [CrossRef]
- Brown, D.G.; Agrawal, A.; Sass, D.A.; Wang, J.; Hua, J.; Xie, Y. Responses to climate and economic risks and opportunities across national and ecological boundaries: Changing household strategies on the Mongolian plateau. Environ. Res. Lett. 2013, 8, 045011. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Li, L.; Chen, X.; Shi, H. Effects of precipitation intensity and temperature on NDVI-based grass change over northern China during the period from 1982 to 2011. Remote Sens. 2015, 7, 10164–10183. [Google Scholar] [CrossRef]
- Lu, N. Regional Climate Change and Vegetation-Water Relations in Inner Mongolia Lessons Learned within the Nasa Project “Effects of Land Use Change on the Energy and Water Balance of the Semi-Arid Region of Inner Mongolia, China”; The University of Toledo: Toledo, OH, USA, 2009. [Google Scholar]
- Parrott, L.; Meyer, W.S. Future landscapes: Managing within complexity. Front. Ecol. Environ. 2012, 10, 382–389. [Google Scholar] [CrossRef]
- Stiles, A.; Scheiner, S.M. A multi-scale analysis of fragmentation effects on remnant plant species richness in Phoenix, Arizona. J. Biogeogr. 2010, 37, 1721–1729. [Google Scholar] [CrossRef]
- Chamaillé-Jammes, S.; Fritz, H. Precipitation–NDVI relationships in eastern and southern African savannas vary along a precipitation gradient. Int. J. Remote Sens. 2009, 30, 3409–3422. [Google Scholar] [CrossRef]
- Guan, B.T. Ensemble empirical mode decomposition for analyzing phenological responses to warming. Agric. For. Meteorol. 2014, 194, 1–7. [Google Scholar] [CrossRef]
- Hawinkel, P.; Swinnen, E.; Lhermitte, S.; Verbist, B.; Van Orshoven, J.; Muys, B. A time series processing tool to extract climate-driven interannual vegetation dynamics using ensemble empirical mode decomposition (EEMD). Remote Sens. Environ. 2015, 169, 375–389. [Google Scholar] [CrossRef] [Green Version]
- Martínez, B.; Gilabert, M.A. Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sens. Environ. 2009, 113, 1823–1842. [Google Scholar] [CrossRef]
- Fan, J.; Wang, K.; Harris, W.; Zhong, H.; Hu, Z.; Han, B.; Zhang, W.; Wang, J. Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia. J. Arid Environ. 2009, 73, 521–528. [Google Scholar] [CrossRef]
- Briske, D.D.; Zhao, M.; Han, G.; Xiu, C.; Kemp, D.R.; Willms, W.; Havstad, K.; Kang, L.; Wang, Z.; Wu, J. Strategies to alleviate poverty and grassland degradation in Inner Mongolia: Intensification vs production efficiency of livestock systems. J. Environ. Manag. 2015, 152, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Gisladottir, G.; Stocking, M. Land degradation control and its global environmental benefits. Land Degrad. Dev. 2005, 16, 99–112. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M.; Bai, Y.; Zhang, L. A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China. Ecol. Model. 2009, 220, 1810–1818. [Google Scholar] [CrossRef]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J. Complexity of coupled human and natural systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Deng, X.; Song, W.; Li, Z.; Chen, J. What is the main cause of grassland degradation? A case study of grassland ecosystem service in the middle-south Inner Mongolia. Catena 2017, 150, 100–107. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, H.; Shen, H.; Zhou, D.; Zhou, L.; Myneni, R.B.; Fang, J. Satellite-indicated long-term vegetation changes and their drivers on the Mongolian plateau. Landsc. Ecol. 2015, 30, 1599–1611. [Google Scholar] [CrossRef]
- Guo, L.; Wu, S.; Zhao, D.; Yin, Y.; Leng, G.; Zhang, Q. NDVI-based vegetation change in Inner Mongolia from 1982 to 2006 and its relationship to climate at the biome scale. Adv. Meteorol. 2014, 2014. [Google Scholar] [CrossRef]
- Li, A.; Wu, J.; Huang, J. Distinguishing between human-induced and climate-driven vegetation changes: A critical application of restrend in Inner Mongolia. Landsc. Ecol. 2012, 27, 969–982. [Google Scholar] [CrossRef]
- Li, Z.; Ma, W.; Liang, C.; Liu, Z.; Wang, W.; Wang, L. Long-term vegetation dynamics driven by climatic variations in the Inner Mongolia grassland: Findings from 30-year monitoring. Landsc. Ecol. 2015, 30, 1701–1711. [Google Scholar] [CrossRef]
- Han, F.; Kang, S.; Buyantuev, A.; Zhang, Q.; Niu, J.; Yu, D.; Ding, Y.; Liu, P.; Ma, W. Effects of climate change on primary production in the Inner Mongolia plateau, China. Int. J. Remote Sens. 2016, 37, 5551–5564. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, X.; Zhou, C.; Zhang, H.; Ouyang, H. Responses of grassland vegetation to climatic variations on different temporal scales in Hulun Buir grassland in the past 30 years. J. Geogr. Sci. 2011, 21, 634–650. [Google Scholar] [CrossRef]
- Leemans, R.; Eickhout, B. Another reason for concern: Regional and global impacts on ecosystems for different levels of climate change. Glob. Environ. Change 2004, 14, 219–228. [Google Scholar] [CrossRef]
- Puntsukova, S.D.; Gomboev, B.O.; Akhmetzyanova, M.R.; Jamsran, T.; Dagdan, T.; Suocheng, D. Comparative analysis of different forest ecosystems response to global climate change and economic activity. J. Resour. Ecol. 2015, 6, 106–109. [Google Scholar] [CrossRef]
- Kong, Y.-L.; Meng, Y.; Li, W.; Yue, A.-Z.; Yuan, Y. Satellite image time series decomposition based on EEMD. Remote Sens. 2015, 7, 15583–15604. [Google Scholar] [CrossRef]
- Sun, J.; Qin, X.; Yang, J. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan plateau. Environ. Monit. Assess. 2016, 188, 20. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Vierling, L.; Deering, D. A simple and effective radiometric correction method to improve landscape change detection across sensors and across time. Remote Sens. Environ. 2005, 98, 63–79. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, J.; Pan, Q.; Huang, J.; Wang, Q.; Li, F.; Buyantuyev, A.; Han, X. Positive linear relationship between productivity and diversity: Evidence from the Eurasian steppe. J. Appl. Ecol. 2007, 44, 1023–1034. [Google Scholar] [CrossRef]
- Wilcox, D.A.; Xie, Y. Predicted effects of proposed new regulation plans on sedge/grass meadows of Lake Ontario. J. Great Lakes Res. 2008, 34, 745–754. [Google Scholar] [CrossRef]
- Jing, W.; Yang, Y.; Yue, X.; Zhao, X. A spatial downscaling algorithm for satellite-based precipitation over the Tibetan plateau based on NDVI, DEM, and land surface temperature. Remote Sens. 2016, 8, 655. [Google Scholar] [CrossRef]
- Wang, J.; Rich, P.M.; Price, K.P. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int. J. Remote Sens. 2003, 24, 2345–2364. [Google Scholar] [CrossRef] [Green Version]
- Kardol, P.; Cregger, M.A.; Campany, C.E.; Classen, A.T. Soil ecosystem functioning under climate change: Plant species and community effects. Ecology 2010, 91, 767–781. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. In The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, London, UK, 8 March 1998; The Royal Society: London, UK, 1998; pp. 903–995. [Google Scholar]
- Wu, Z.; Huang, N.E.; Long, S.R.; Peng, C.-K. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc. Natl. Acad. Sci. USA 2007, 104, 14889–14894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Rilling, G.; Flandrin, P.; Goncalves, P. On Empirical Mode Decomposition and Its Algorithms. In Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, NSIP-03, Grado, Italy, 8–11 June 2003; pp. 8–11. [Google Scholar]
- Legendre, P.; Legendre, L.F. Numerical Ecology; Elsevier: New York, NY, USA, 2012; Volume 24. [Google Scholar]
- Rao, C.R. The use and interpretation of principal component analysis in applied research. Sankhyā Indian J. Stat. Ser. A 1964, 26, 329–358. [Google Scholar]
- Tsai, H.P.; Lin, Y.-H.; Yang, M.-D. Exploring Long Term Spatial Vegetation Trends in Taiwan from AVHRR NDVI3g Dataset Using RDA and HCA Analyses. Remote Sens. 2016, 8, 290. [Google Scholar] [CrossRef]
- Ezekiel, M. Methods of Correlation Analysis; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1941. [Google Scholar]
- Miller, J.K. The sampling distribution and a test for the significance of the bimultivariate redundancy statistic: A Monte Carlo study. Multivar. Behav. Res. 1975, 10, 233–244. [Google Scholar] [CrossRef]
- Legendre, P.; Oksanen, J.; ter Braak, C.J. Testing the significance of canonical axes in redundancy analysis. Methods Ecol. Evol. 2011, 2, 269–277. [Google Scholar] [CrossRef]
- McKee, A.; Lake Huron, C.; Midwood, J.; Chow-Fraser, P. Water-Level-Induced Changes in Fish Communities in Coastal Wetlands of Eastern Georgian Bay; Upper Great Lakes Management Unit, Ontario Ministry of Natural Resources: Owen Sound, ON, Canada, 2010. [Google Scholar]
- Davies, P. Procedures for reduced-rank regression. Appl. Stat. 1982, 31, 244–255. [Google Scholar] [CrossRef]
- Hao, L.; Sun, G.; Liu, Y.; Gao, Z.; He, J.; Shi, T.; Wu, B. Effects of precipitation on grassland ecosystem restoration under grazing exclusion in Inner Mongolia, China. Landsc. Ecol. 2014, 29, 1657–1673. [Google Scholar] [CrossRef]
- He, X.; He, K.S.; Hyvönen, J. Will bryophytes survive in a warming world? Perspect. Plant Ecol. Evol. Syst. 2016, 19, 49–60. [Google Scholar] [CrossRef]
- Wu, M.; Schurgers, G.; Rummukainen, M.; Smith, B.; Samuelsson, P.; Jansson, C.; Siltberg, J.; May, W. Vegetation-climate feedbacks modulate rainfall patterns in Africa under future climate change. Earth Syst. Dyn. 2016, 7, 627–647. [Google Scholar] [CrossRef]
Fraction | Variation (adj) | Percent of Explained | F | P |
---|---|---|---|---|
Precipitation | 0.049821 | 17.7 | 145 | 0.002 |
Temperature | 0.11194 | 39.8 | 33.1 | 0.002 |
Joint effect | 0.11967 | 42.5 | ||
Total Explained | 0.28143 | 100.0 | ||
All Variation | 1 | |||
Correlation of predictors | 0.482759 |
Fraction | Variation (adj) | Percent of Explained | F | P |
---|---|---|---|---|
Precipitation | 0.040249 | 4.2 | 145 | 0.002 |
Temperature | 0.0089356 | 0.9 | 33.1 | 0.002 |
Joint effect | 0.91374 | 94.9 | ||
Total Explained | 0.96293 | 100.0 | 1741 | 0.002 |
All Variation | 1 | 134 |
Fraction | Variation (adj) | % of Explained | F | P |
---|---|---|---|---|
Precipitation | 0.043481 | 15.6 | 27.0 | 0.001 |
Temperature | 0.10595 | 37.9 | 9.0 | 0.002 |
Joint Effect | 0.13015 | 46.6 | ||
Total Explained | 0.27957 | 100.0 | 20.6 | 0.001 |
All Variation | 1 | |||
Correlation of predictors 0.493891 |
Fraction | Variation (adj) | % of Explained | F | P |
---|---|---|---|---|
Precipitation | 0.03219 | 20.2 | 6.1 | 0.006 |
Temperature | 0.12068 | 75.7 | 20.1 | 0.001 |
Joint Effect | 0.0064789 | 4.1 | ||
Total Explained | 0.15935 | 100.0 | 13.7 | 0.001 |
All Variation | 1 | |||
Correlation of predictors 0.07562 |
Fraction | Variation (adj) | % of Explained | F | P |
---|---|---|---|---|
Precipitation | 0.31748 | 32.5 | 1457 | 0.02 |
Temperature | 0.2546 | 26.1 | 1816 | 0.02 |
Joint Effect | 0.40466 | 41.4 | ||
Total Explained | 0.97674 | 100.0 | 2841 | 0.02 |
All Variation | 1 | |||
Correlation of predictors −0.99382 |
Fraction | Variation (adj) | % of Explained | F | P |
---|---|---|---|---|
Precipitation | 0.0468 | 4.8 | 380 | 0.3 |
Temperature | 0.07709 | 7.8 | 625 | 0.362 |
Joint Effect | 0.85969 | 87.4 | ||
Total Explained | 0.98358 | 100.0 | 4014 | 0.04 |
All Variation | 1 | |||
Correlation of predictors −0.97398 |
EVI by Vegetation Type | Tran-Sect | %Explanation | Partial Effect | Pearson’s Correlation | Predictors Correlation | Significance | ||||
---|---|---|---|---|---|---|---|---|---|---|
Prec | Temp | Joint | Prec | Temp | F | P | ||||
Steppe | west | 97.5 | 6.1 | 68.3 | 25.7 | −0.56 | −0.97 | 0.88 | 2617 | 0.002 |
east | 97.5 | 9.3 | 0 | 90.7 | 0.99 | −0.94 | −0.67 | 2579 | 0.004 | |
Farmland | west | 99.9 | 13.7 | 92.1 | −5.9 | 0.29 | −0.93 | −0.99 | 74107 | 0.002 |
east | 97.4 | 22.6 | 4.8 | 72.6 | 0.96 | −0.88 | −0.06 | 2492 | 0.002 | |
Bare | west | 99.9 | 0.4 | 99.3 | 0.3 | −0.12 | −0.99 | −0.56 | 67611 | 0.002 |
east | 99.7 | 3.9 | 15.6 | 80.4 | 0.91 | −0.98 | 0.89 | 28646 | 0.002 | |
Gobi/desert | west | 98.6 | 1.9 | 5.0 | 91.7 | 0.97 | −0.99 | −0.94 | 4830 | 0.002 |
east | 85.3 | 95 | 100.8 | −96.0 | 0.02 | 0.23 | −0.37 | 390 | 0.002 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Xie, Y.; Liu, C.; Bai, Y.; Zhang, A.; Mao, L.; Fan, S. Trend Analysis of Relationship between Primary Productivity, Precipitation and Temperature in Inner Mongolia. ISPRS Int. J. Geo-Inf. 2018, 7, 214. https://doi.org/10.3390/ijgi7060214
Chen T, Xie Y, Liu C, Bai Y, Zhang A, Mao L, Fan S. Trend Analysis of Relationship between Primary Productivity, Precipitation and Temperature in Inner Mongolia. ISPRS International Journal of Geo-Information. 2018; 7(6):214. https://doi.org/10.3390/ijgi7060214
Chicago/Turabian StyleChen, Tianyang, Yichun Xie, Chao Liu, Yongfei Bai, Anbing Zhang, Lishen Mao, and Siyu Fan. 2018. "Trend Analysis of Relationship between Primary Productivity, Precipitation and Temperature in Inner Mongolia" ISPRS International Journal of Geo-Information 7, no. 6: 214. https://doi.org/10.3390/ijgi7060214
APA StyleChen, T., Xie, Y., Liu, C., Bai, Y., Zhang, A., Mao, L., & Fan, S. (2018). Trend Analysis of Relationship between Primary Productivity, Precipitation and Temperature in Inner Mongolia. ISPRS International Journal of Geo-Information, 7(6), 214. https://doi.org/10.3390/ijgi7060214