Journey-to-Crime Distances of Residential Burglars in China Disentangled: Origin and Destination Effects
Abstract
:1. Introduction
2. Theories and Prior Findings
2.1. Rational Choice Theory: Benefits, Risks and Effort
2.2. Crime Pattern Theory: Individual Offender Awareness Spaces
3. Data and Methods
3.1. Data
3.1.1. Dependent Variable: Journey-to-Crime Distance
3.1.2. Independent Variables
3.2. Methods
4. Results
5. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rossmo, K. Geographic Profiling; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Brantingham, P.L.; Brantingham, P.J. Nodes, paths and edges: Considerations on the complexity of crime and the physical environment. J. Environ. Psychol. 1993, 13, 3–28. [Google Scholar] [CrossRef]
- Brantingham, P.L.; Brantingham, P.J. Notes on the Geometry of Crime. In Environmental Criminology; Brantingham, P.J., Brantingham, P.L., Eds.; Sage Publications: Beverly Hills, CA, USA, 1981; pp. 27–54. [Google Scholar]
- Cornish, D.B.; Clarke, R.V. The Reasoning Criminal: Rational Choice Perspective on Offending; Springer: Berlin, Germany, 1986. [Google Scholar]
- Wheeler, A. The Moving Home Effect: A Quasi Experiment Assessing Effect of Home Location on the Offence Location. J. Quant. Criminol. 2012, 28, 587–606. [Google Scholar] [CrossRef]
- Block, R.; Galary, A.; Brice, D. The Journey to Crime: Victims and Offenders Converge in Violent Index Offences in Chicago. Secur. J. 2007, 20, 123–137. [Google Scholar] [CrossRef]
- Vandeviver, C.; van Daele, S.; Beken, T.V. What makes long crime trips worth undertaking? Balancing costs and benefits in burglars’ journey to crime. Br. J. Criminol. 2015, 55, 399–420. [Google Scholar] [CrossRef]
- Capone, L.D.; Nichols, W.W. Urban Structure and Criminal Mobility. Am. Behav. Sci. 1976, 20, 199–213. [Google Scholar] [CrossRef]
- Rattner, A.; Portnov, B.A. Distance decay function in criminal behavior: A case of Israel. Ann. Reg. Sci. 2007, 41, 673–688. [Google Scholar] [CrossRef]
- Van Koppen, P.J.; Keijser, J.W. Desisting Distance Decay: On the Aggregation of Individual Crime Trips. Criminology 1997, 35, 505–515. [Google Scholar] [CrossRef]
- Rengert, F.G.; Piquero, A.R.; Jones, P.R. Distance Decay Reexamined. Criminology 1999, 37, 427–446. [Google Scholar] [CrossRef]
- Townsley, M.; Sidebottom, A. All offenders are equal, but some are more equal than others: Variation in journeys to crime between offenders. Criminology 2010, 48, 897–917. [Google Scholar] [CrossRef]
- Ackerman, M.J.; Rossmo, D.K. How far to travel? A multilevel analysis of the residence-to-crime distance. J. Quant. Criminol. 2015, 31, 237–262. [Google Scholar] [CrossRef]
- Andresen, A.M.; Frank, R.; Felson, M. Age and the distance to crime. Criminol. Crim. Justice 2014, 14, 314–333. [Google Scholar] [CrossRef]
- Levine, N.; Lee, P. Journey-to-Crime by Gender and Age Group in Manchester, England, in Crime Modeling and Mapping Using Geospatial Technologies; Leitner, M., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 145–178. [Google Scholar]
- Johnson, T.L.; Taylor, R.B.; Ratcliffe, J.H. Need drugs, will travel? The distances to crime of illegal drug buyers. J. Crim. Justice 2013, 41, 178–187. [Google Scholar] [CrossRef]
- Van Daele, S.; Beken, T.V. Outbound offending: The journey to crime and crime sprees. J. Environ. Psychol. 2011, 31, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Bernasco, W.; Nieuwbeerta, P. How do residential burglars select target areas? A new approach to the analysis of criminal location choice. Br. J. Criminol. 2005, 45, 296–315. [Google Scholar] [CrossRef]
- Ruiter, S. Crime Location Choice: State-of-the-Art and Avenues for Future Research. In The Oxford Handbook of Offender Decision Making; Bernasco, W., Elffers, H., Gelder, J.-L.V., Eds.; Oxford University Press: Oxford, UK, 2017; pp. 398–420. [Google Scholar]
- Morselli, C.; Royer, M.-N. Criminal Mobility and Criminal Achievement. J. Res. Crime Délinq. 2008, 45, 4–21. [Google Scholar] [CrossRef]
- Chamberlain, W.A.; Boggess, L.N. Relative Difference and Burglary Location: Can Ecological Characteristics of a Burglar’s Home Neighborhood Predict Offense Location? J. Res. Crime Délinq. 2016, 53, 872–906. [Google Scholar] [CrossRef]
- Rengert, G.F. Burglary in Philadelphia: A Critique of an Opportunity Structure Model. In Environmental Criminology; Brantingham, P.J., Brantingham, P.L., Eds.; Sage Publications: Beverly Hills, CA, USA, 1981; pp. 189–202. [Google Scholar]
- Smith, T.S. Inverse Distance Variations for the Flow of Crime in Urban Areas. Soc. Forces 1976, 54, 802–815. [Google Scholar] [CrossRef]
- Reynald, D.; Averdijk, M.; Elffers, H.; Bernasco, W. Do Social Barriers Affect Urban Crime Trips? The Effects of Ethnic and Economic Neighbourhood Compositions on the Flow of Crime in The Hague, The Netherlands. Built Environ. 2008, 34, 21–31. [Google Scholar] [CrossRef]
- Bennett, T.; Wright, R. Burglars on Burglary: Prevention and the Offender; Gower Publishing Company: Brookfield, VT, USA, 1984. [Google Scholar]
- Nagin, S.D.; Paternoster, R. Personal Capital and Social Control: The Deterrence Implications of a Theory of Individual Differences in Criminal Offending. Criminology 1994, 32, 581–606. [Google Scholar] [CrossRef]
- Rengert, G.F. The Journey to Crime, in Punishment, Places and Perpetrators; Bruinsma, G., Elffers, H., de Keijser, J., Eds.; Willan: Devon, UK, 2004; pp. 169–181. [Google Scholar]
- Vandeviver, C.; Neutens, T.; Van Daele, S.; Geurts, D.; Vander Beken, T. A discrete spatial choice model of burglary target selection at the house-level. Appl. Geogr. 2015, 64, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Townsley, M.; Birks, D.; Bernasco, W.; Ruiter, S.; Johnson, S.D.; White, G.; Baum, S. Burglar Target Selection: A Cross-national Comparison. J. Res. Crime Délinq. 2015, 52, 3–31. [Google Scholar] [CrossRef] [PubMed]
- Loughran, T.A.; Paternoster, R.; Piquero, A.R.; Pogarsky, G. On Ambiguity in Perceptions of Risk: Implications for Criminal Decision Making and Deterrence. Criminology 2011, 49, 1029–1061. [Google Scholar] [CrossRef]
- Lim, H.; Wilcox, P. Crime-Reduction Effects of Open-street CCTV: Conditionality Considerations. Justice Q. 2017, 34, 597–626. [Google Scholar] [CrossRef]
- Zhang, L.; Messner, S.F.; Liu, J. A Multilevel Analysis of the Risk of Household Burglary in the City of Tianjin, China. Br. J. Criminol. 2007, 47, 918–937. [Google Scholar] [CrossRef]
- Jiang, S.; Lambert, E.; Wang, J. Correlates of formal and informal social/crime control in China: An exploratory study. J. Crim. Justice 2007, 35, 261–271. [Google Scholar] [CrossRef]
- Jiang, S.; Land, K.C.; Wang, J. Social Ties, Collective Efficacy and Perceived Neighborhood Property Crime in Guangzhou, China. Asian J. Criminol. 2013, 8, 207–223. [Google Scholar] [CrossRef]
- Braga, A.A.; Clarke, R.V. Explaining High-Risk Concentrations of Crime in the City: Social Disorganization, Crime Opportunities, and Important Next Steps. J. Res. Crime Délinq. 2014, 51, 480–498. [Google Scholar] [CrossRef]
- Addington, A.L.; Rennison, C.M. Keeping the Barbarians Outside the Gate? Comparing Burglary Victimization in Gated and Non-Gated Communities. Justice Q. 2015, 32, 168–192. [Google Scholar] [CrossRef]
- Summers, L.; Johnson, S.D. Does the Configuration of the Street Network Influence Where Outdoor Serious Violence Takes Place? Using Space Syntax to Test Crime Pattern Theory. J. Quant. Criminol. 2017, 33, 397–420. [Google Scholar] [CrossRef]
- Davies, T.; Johnson, S.D. Examining the Relationship Between Road Structure and Burglary Risk Via Quantitative Network Analysis. J. Quant. Criminol. 2015, 31, 481–507. [Google Scholar] [CrossRef]
- Frith, J.M.; Johnson, S.D.; Fry, H.M. Role of the street network in burglars’ spatial decision-making. Criminology 2017, 55, 344–376. [Google Scholar] [CrossRef]
- Zhou, S.; Deng, L.; Kwan, M.P.; Yan, R. Social and spatial differentiation of high and low income groups out-of-home activities in Guangzhou, China. Cities 2015, 45, 81–90. [Google Scholar] [CrossRef]
- Rengert, G.F. Some effects of being female on criminal spatial behavior. Pa. Geogr. 1975, 13, 10–18. [Google Scholar]
- Pettiway, L.E. Copping crack: The travel behavior of crack users. Justice Q. 1995, 12, 499–524. [Google Scholar] [CrossRef]
- Brent, S. Individual differences in distance travelled by serial burglars. J. Investig. Psychol. Offender Profiling 2004, 1, 53–66. [Google Scholar]
- Chen, J.; Liu, L.; Zhou, S.; Xiao, L.; Jiang, C. Spatial Variation Relationship between Floating Population and Residential Burglary: A Case Study from ZG, China. ISPRS Int. J. Geo-Inf. 2017, 6, 246. [Google Scholar] [CrossRef]
- Liu, L.; Feng, J.; Ren, F.; Xiao, L. Examining the relationship between neighborhood environment and residential locations of juvenile and adult migrant burglars in China. Cities 2018. [Google Scholar] [CrossRef]
- Groff, E.; McEwen, J.T. Disaggregating the Journey to Homicide, in Geographic Information Systems and Crime Analysis; Wang, F., Ed.; Idea Group: Hershey, PA, USA, 2005; pp. 60–83. [Google Scholar]
- Yang, G.; Liu, L.; He, S.; Xu, C. Environmental impacts on burglary victimization in gated communities: A multi-level analysis in Guangzhou. Trop. Geogr. 2016, 36, 610–618. [Google Scholar]
- Xiao, L.; Liu, L.; Song, G.; Zhou, S.; Long, D.; Feng, J. Impacts of community environment on residential burglary based on rational choice theory. Geogr. Res. 2016, 36, 2479–2491. [Google Scholar]
- Jiang, S.; Wang, J.; Lambert, E. Correlates of informal social control in Guangzhou, China neighborhoods. J. Crim. Justice 2010, 38, 460–469. [Google Scholar] [CrossRef]
- Snijders, T.A.B.; Bosker, R.J. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling, 2nd ed.; Sage: Los Angeles, CA, USA, 2012. [Google Scholar]
- Park, H.-C.; Kim, D.K.; Kho, S.Y.; Park, P.Y. Cross-classified multilevel models for severity of commercial motor vehicle crashes considering heterogeneity among companies and regions. Accid. Anal. Prev. 2017, 106, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Townsend, N.; Rutter, H.; Foster, C. Age differences in the association of childhood obesity with area-level and school-level deprivation: Cross-classified multilevel analysis of cross-sectional data. Int. J. Obes. 2012, 36, 45. [Google Scholar] [CrossRef] [PubMed]
- Rasbash, J.; Goldstein, H. Efficient analysis of mixed hierarchical and cross-classified random structures using a multilevel model. J. Educ. Behav. Stat. 1994, 19, 337–350. [Google Scholar] [CrossRef]
- Fox, J. Applied Regression Analysis and Generalized Linear Models; Sage Publications: Thousand Oaks, CA, USA, 2015. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Song, G.; Liu, L.; Bernasco, W.; Zhou, S.; Xiao, L.; Long, D. Theft from the person in urban China: Assessing the diurnal effects of opportunity and social ecology. Habitat Int. 2018, 78, 13–20. [Google Scholar] [CrossRef]
- Nichols, W.W. Mental Maps, Social Characteristics, and Criminal Mobility. In Crime: A Spatial Perspective; Columbia University Press: New York, NY, USA, 1980; pp. 156–166. [Google Scholar]
- Van Koppen, P.J.; Jansen, R.W.J. The Road to the Robbery: Travel Patterns in Commercial Robberies. Br. J. Criminol. 1998, 38, 230–246. [Google Scholar] [CrossRef]
Theory | Variable | Mean | Std. Dev. | Min. | Max. | |
---|---|---|---|---|---|---|
Dependent variable | ||||||
Distance (km) | 7.142 | 10.292 | 0.094 | 90.403 | ||
Log distance (km) | 1.172 | 1.289 | −2.362 | 4.504 | ||
Individual-level variables | ||||||
Crime pattern theory | Age | 27.698 | 8.694 | 9.000 | 65.000 | |
Gender (male = 1) | 0.954 | 0.210 | 0 | 1 | ||
Local resident (yes = 1) | 0.147 | 0.354 | 0 | 1 | ||
Co-offending (yes = 1) | 0.246 | 0.431 | 0 | 1 | ||
Target community-level variables | ||||||
Rational choice theory | benefit | Number of households (/1000 households) | 3.107 | 3.034 | 0.029 | 21.456 |
benefit | Average rent (1000 yuan per month) | 0.525 | 0.519 | 0.000 | 4.000 | |
risk | Percentage of houses over 9 floors (%) | 9.341 | 20.701 | 0.000 | 100.000 | |
risk | Percentage of local residents (%) | 56.591 | 25.809 | 2.558 | 100.000 | |
cost | Road network density (km/km2) | 9.155 | 6.535 | 0.199 | 55.902 | |
Home community-level variables | ||||||
Rational choice theory | benefit | Number of households (/1000 households) | 3.422 | 3.151 | 98.000 | 21,456.000 |
benefit | Average rent (1000 yuan per month) | 0.454 | 0.392 | 0.000 | 4000.000 | |
risk | Percentage of houses over 9 floors (%) | 6.049 | 15.011 | 0.000 | 100.000 | |
risk | Percentage of local residents (%) | 51.441 | 26.224 | 2.558 | 100.000 | |
cost | Road network density (km/km2) | 9.257 | 6.248 | 0.199 | 46.329 |
Null Model 0 | Model 1 | Full Model 2 | ||||
---|---|---|---|---|---|---|
Coefficient | t-Ratio | Coefficient | t-Ratio | Coefficient | t-Ratio | |
(Intercept) | 1.107 *** | 31.700 | 1.062 *** | 29.986 | 1.096 *** | 30.493 |
Individual level | ||||||
Age | 0.006 ** | 2.826 | 0.007 ** | 3.057 | ||
Gender (male = 1) | 0.010 | 0.102 | −0.015 | −0.162 | ||
Local resident (yes = 1) | 0.072 | 1.112 | 0.080 | 1.208 | ||
Co-offending (yes = 1) | 0.323 *** | 7.316 | 0.319 *** | 7.261 | ||
Target community level | ||||||
Number of households (/1000 households) | 0.016 | 1.365 | 0.018 | 1.532 | ||
Average rent (1000 yuan per month) | 0.019 | 0.305 | 0.073 | 0.166 | ||
Percentage of houses over 9 floors (%) | 0.001 | 0.379 | 0.001 | 0.571 | ||
Percentage of local residents (%) | 0.008 *** | 6.530 | 0.008 *** | 6.846 | ||
Road network density (km/km2) | −0.016 *** | −4.080 | −0.010 ** | −2.621 | ||
Home community level | ||||||
Number of households (/1000 households) | −0.006 | −0.408 | ||||
Average rent (1000 yuan per month) | −0.3230 *** | −3.849 | ||||
Percentage of houses over 9 floors (%) | 0.000 | 0.019 | ||||
Percentage of local residents (%) | −0.005 ** | −2.990 | ||||
Road network density (km/km2) | −0.018 ** | −3.497 | ||||
Target community-level variance | 0.276 | 0.227 | 0.210 | |||
Home community-level variance | 0.539 | 0.548 | 0.517 | |||
Individual-level variance | 1.009 | 0.991 | 0.993 | |||
Total variance | 1.824 | 1.767 | 1.719 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, L.; Liu, L.; Song, G.; Ruiter, S.; Zhou, S. Journey-to-Crime Distances of Residential Burglars in China Disentangled: Origin and Destination Effects. ISPRS Int. J. Geo-Inf. 2018, 7, 325. https://doi.org/10.3390/ijgi7080325
Xiao L, Liu L, Song G, Ruiter S, Zhou S. Journey-to-Crime Distances of Residential Burglars in China Disentangled: Origin and Destination Effects. ISPRS International Journal of Geo-Information. 2018; 7(8):325. https://doi.org/10.3390/ijgi7080325
Chicago/Turabian StyleXiao, Luzi, Lin Liu, Guangwen Song, Stijn Ruiter, and Suhong Zhou. 2018. "Journey-to-Crime Distances of Residential Burglars in China Disentangled: Origin and Destination Effects" ISPRS International Journal of Geo-Information 7, no. 8: 325. https://doi.org/10.3390/ijgi7080325
APA StyleXiao, L., Liu, L., Song, G., Ruiter, S., & Zhou, S. (2018). Journey-to-Crime Distances of Residential Burglars in China Disentangled: Origin and Destination Effects. ISPRS International Journal of Geo-Information, 7(8), 325. https://doi.org/10.3390/ijgi7080325