Analysis of Urban Drivable and Walkable Street Networks of the ASEAN Smart Cities Network
Abstract
:1. Introduction
2. Literature Review
2.1. Street Networks of the ASCN
2.2. Transport Development in the ASCN
3. Materials and Methods
3.1. Area Selection
3.2. Street Network Measures
3.3. Data Processing
3.4. Data Validation
3.5. Data Analysis
4. Results
4.1. Street Patterns
4.2. Street Distances
4.3. Street Density
5. Discussion and Conclusions
5.1. Comparison of DSNs and WSNs across the ASCN
5.2. Implications of SNs for the ASCN
5.3. Contribution to the Literature on Transport in the ASCN
5.4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahmed, K.; Bhattacharya, M.; Shaikh, Z.; Ramzan, M.; Ozturk, I. Emission intensive growth and trade in the era of the Association of Southeast Asian Nations (ASEAN) integration: An empirical investigation from ASEAN-8. J. Clean. Prod. 2017, 154, 530–540. [Google Scholar] [CrossRef]
- Chen, F.; Wang, J.; Wu, J.; Chen, X.; Zegras, P.C. Monitoring road safety development at regional level: A case study in the ASEAN region. Accid. Anal. Prev. 2017, 106, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Ludher, E.; Sharda, N.; Lal, R.; Chow, C.; Ng, J. Smart Cities in South East Asia; McKinsey Global Institute: Singapore, 2018; p. 80. [Google Scholar]
- Jonathan, W.; Diaan-Yi, L.; Mukund, S.; Yap, S.-E. Smart Cities in South East Asia; McKinsey Global Institute (MGI): Singapore, 2018. [Google Scholar]
- Haque, M.M.; Chin, H.C.; Debnath, A.K. Sustainable, safe, smart—three key elements of Singapore’s evolving transport policies. Transp. Policy 2013, 27, 20–31. [Google Scholar] [CrossRef]
- Cao, X.; Feiwen, L.; Huiling, C.; Liu, Y. Circuity Characteristics of Urban Travel Based on GPS Data: A Case Study of Guangzhou. Sustainability 2017, 9, 2156. [Google Scholar] [CrossRef]
- Sharifi, A. Resilient urban forms: A review of literature on streets and street networks. Build. Environ. 2019, 147, 171–187. [Google Scholar] [CrossRef]
- Patarasuk, R. Road network connectivity and land-cover dynamics in Lop Buri province, Thailand. J. Transp. Geogr. 2013, 28, 111–123. [Google Scholar] [CrossRef]
- Giacomin, D.J.; Levinson, D.M. Road network circuity in metropolitan areas. Environ. Plan. B Plan. Des. 2015, 42, 1040–1053. [Google Scholar] [CrossRef] [Green Version]
- Godwin, A.; Price, A.M. Bicycling and walking in the Southeast USA: Why is it rare and risky? J. Transp. Health 2016, 3, 26–37. [Google Scholar] [CrossRef]
- Huang, J.; Levinson, D.M. Circuity in urban transit networks. J. Transp. Geogr. 2015, 48, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Caset, F.; Vale, D.S.; Viana, C.M. Measuring the Accessibility of Railway Stations in the Brussels Regional Express Network: A Node-Place Modeling Approach. Netw. Spat. Econ. 2018, 18, 495–530. [Google Scholar] [CrossRef]
- Boeing, G. The Morphology and Circuity of Walkable and Drivable Street Networks. SocArXiv 2018, 271–287. [Google Scholar] [CrossRef]
- Yen, Y.; Wang, Z.; Shi, Y.; Xu, F.; Soeung, B.; Sohail, M.T.; Rubakula, G.; Juma, S.A. The predictors of the behavioral intention to the use of urban green spaces: The perspectives of young residents in Phnom Penh, Cambodia. Habitat Int. 2017, 64, 98–108. [Google Scholar] [CrossRef]
- Ratanavaraha, V.; Jomnonkwao, S. Trends in Thailand CO2 emissions in the transportation sector and Policy Mitigation. Transp. Policy 2015, 41, 136–146. [Google Scholar] [CrossRef]
- Tarigan, A.K.M.; Sagala, S.; Samsura, D.A.A.; Fiisabiilillah, D.F.; Simarmata, H.A.; Nababan, M. Bandung City, Indonesia. Cities 2016, 50, 100–110. [Google Scholar] [CrossRef]
- Emberger, G. Urban Transport in Ho Chi Minh City, Vietnam. In Sustainable Ho Chi Minh City: Climate Policies for Emerging Mega Cities; Katzschner, A., Waibel, M., Schwede, D., Katzschner, L., Schmidt, M., Storch, H., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 175–191. [Google Scholar] [CrossRef]
- Kitamura, Y.; Hayashi, M.; Yagi, E. Traffic problems in Southeast Asia featuring the case of Cambodia’s traffic accidents involving motorcycles. IATSS Res. 2018, 42, 163–170. [Google Scholar] [CrossRef]
- Karduni, A.; Kermanshah, A.; Derrible, S. A protocol to convert spatial polyline data to network formats and applications to world urban road networks. Sci. Data 2016, 3, 160046. [Google Scholar] [CrossRef]
- Marshall, S.; Gil, J.; Kropf, K.; Tomko, M.; Figueiredo, L. Street Network Studies: From Networks to Models and their Representations. Netw. Spat. Econ. 2018, 18, 735–749. [Google Scholar] [CrossRef]
- Schneider, A.; Mertes, C.M.; Tatem, A.J.; Tan, B.; Sulla-Menashe, D.; Graves, S.J.; Patel, N.N.; Horton, J.A.; Gaughan, A.E.; Rollo, J.T.; et al. A new urban landscape in East–Southeast Asia, 2000–2010. Environ. Res. Lett. 2015, 10, 034002. [Google Scholar] [CrossRef]
- Lee, B.-H.; Jung, W.-S. Analysis on the urban street network of Korea: Connections between topology and meta-information. Phys. A Stat. Mech. Appl. 2018, 497, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Wongsa, S.; Vichiensan, V.; Piamsa-nga, N.; Nakamura, S. Urban Flooding and Adaptation to Climate Change in Sukhumvit Area, Bangkok, Thailand. In Proceedings of the New Trends in Urban Drainage Modelling, UDM 2018, Green Energy and Technology, Palermo, Italy, 23–26 September 2018; Springer: Cham, Switzerland, 2019; pp. 644–648. [Google Scholar]
- Gilbuena, R., Jr.; Kawamura, A.; Medina, R.; Amaguchi, H.; Nakagawa, N.; Bui, D.D. Environmental impact assessment of structural flood mitigation measures by a rapid impact assessment matrix (RIAM) technique: A case study in Metro Manila, Philippines. Sci. Total Environ. 2013, 456, 137–147. [Google Scholar] [CrossRef]
- Duy, P.N.; Chapman, L.; Tight, M. Resilient transport systems to reduce urban vulnerability to floods in emerging-coastal cities: A case study of Ho Chi Minh City, Vietnam. Travel Behav. Soc. 2019, 15, 28–43. [Google Scholar] [CrossRef]
- Thanvisitthpon, N. Impact of land use transformation and anti-flood infrastructure on flooding in world heritage site and peri-urban area: A case study of Thailand’s Ayutthaya province. J. Environ. Manag. 2019, 247, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Dingil, A.E.; Schweizer, J.; Rupi, F.; Stasiskiene, Z. Transport indicator analysis and comparison of 151 urban areas, based on open source data. Eur. Transp. Res. Rev. 2018, 10, 58. [Google Scholar] [CrossRef]
- Hu, F.; Zhang, X.; Hu, M.; Cook, D.L. Chinese Enterprises’ Investment in Infrastructure Construction in Cambodia. Asian Perspect. 2019, 43, 177–207. [Google Scholar] [CrossRef]
- World Bank. The Urban Development in Phnom Penh. World Bank 2017, 14–72. [Google Scholar]
- Fesselmeyer, E.; Liu, H. How much do users value a network expansion? Evidence from the public transit system in Singapore. Reg. Sci. Urban Econ. 2018, 71, 46–61. [Google Scholar] [CrossRef]
- Robinson, I.M. Mega Urban Regions of Southeast Asia; UBC Press: Vancouver, BC, Canada, 2011. [Google Scholar]
- Wang, Y.; Chen, L.; Kubota, J. The relationship between urbanization, energy use and carbon emissions: Evidence from a panel of Association of Southeast Asian Nations (ASEAN) countries. J. Clean. Prod. 2016, 112, 1368–1374. [Google Scholar] [CrossRef]
- Phun, V.K.; Kato, H.; Chalermpong, S. Paratransit as a connective mode for mass transit systems in Asian developing cities: Case of Bangkok in the era of ride-hailing services. Transp. Policy 2019. [Google Scholar] [CrossRef]
- Wey, W.-M.; Huang, J.-Y. Urban sustainable transportation planning strategies for livable City’s quality of life. Habitat Int. 2018, 82, 9–27. [Google Scholar] [CrossRef]
- Hanna, R.; Kreindler, G.; Olken, B.A. Citywide effects of high-occupancy vehicle restrictions: Evidence from “three-in-one” in Jakarta. Science 2017, 357, 89–93. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Hoang, H.D.; Hoang, H.T.; Bui, Q.T.; Nguyen, L.P. Modal Preference in Ho Chi Minh City, Vietnam: An Experiment With New Modes of Transport. SAGE Open 2019, 9, 2–14. [Google Scholar] [CrossRef]
- Pongprasert, P.; Kubota, H. Switching from motorcycle taxi to walking: A case study of transit station access in Bangkok, Thailand. IATSS Res. 2017, 41, 182–190. [Google Scholar] [CrossRef]
- Boeing, G. OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 2017, 65, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Ibnoulouafi, A.; El Haziti, M. Density centrality: Identifying influential nodes based on area density formula. Chaos Solitons Fractals 2018, 114, 69–80. [Google Scholar] [CrossRef]
- He, S.; Yu, S.; Shao, X.; Wei, P. A spatial design network analysis of street networks and the locations of leisure entertainment activities: A case study of Wuhan, China. Sustain. Cities Soc. 2018, 44, 880–887. [Google Scholar] [CrossRef]
- Boeing, G. A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow neighborhood. Environ. Plan. B: Urban Anal. City Sci. 2018, 45, 1–19. [Google Scholar] [CrossRef]
- Mülligann, C.; Janowicz, K.; Ye, M.; Lee, W.-C. Analyzing the spatial-semantic interaction of points of interest in volunteered geographic information. In Proceedings of the International Conference on Spatial Information Theory, COSIT 2011, Belfast, ME, USA, 12–16 September 2011; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany; Volume 6899, pp. 350–370. [Google Scholar]
- Zhang, L.; Pfoser, D. Using OpenStreetMap point-of-interest data to model urban change—A feasibility study. PLoS ONE 2019, 14, e0212606. [Google Scholar] [CrossRef]
- Touya, G.; Antoniou, V.; Olteanu-Raimond, A.-M.; Van Damme, M.-D. Assessing Crowdsourced POI Quality: Combining Methods Based on Reference Data, History, and Spatial Relations. ISPRS Int. J. Geo-Inf. 2017, 6, 80. [Google Scholar] [CrossRef]
- Ather, A. A Quality Analysis of Open Street Map Data. Master’ Thesis, University College London, London, UK, 2009. [Google Scholar]
- Basiri, A.; Jackson, M.; Amirian, P.; Pourabdollah, A.; Sester, M.; Winstanley, A.; Moore, T.; Zhang, L. Quality assessment of OpenStreetMap data using trajectory mining. Geo-Spat. Inf. Sci. 2016, 19, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Rui, Y.; Ban, Y. Exploring the relationship between street centrality and land use in Stockholm. Int. J. Geogr. Inf. Sci. 2014, 28, 1425–1438. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Zeng, P.; Chen, X. Centrality Characteristics of Road Network Patterns of Traffic Analysis Zones. Transp. Res. Rec. 2011, 2256, 16–24. [Google Scholar] [CrossRef]
- Loo, L.Y.L.; Corcoran, J.; Mateo-Babiano, D.; Zahnow, R. Transport mode choice in South East Asia: Investigating the relationship between transport users’ perception and travel behaviour in Johor Bahru, Malaysia. J. Transp. Geogr. 2015, 46, 99–111. [Google Scholar] [CrossRef]
- Ha, T.V.; Asada, T.; Arimura, M. Determination of the influence factors on household vehicle ownership patterns in Phnom Penh using statistical and machine learning methods. J. Transp. Geogr. 2019, 78, 70–86. [Google Scholar] [CrossRef]
- Sugiarto, S.; Miwa, T.; Morikawa, T. The tendency of public’s attitudes to evaluate urban congestion charging policy in Asian megacity perspective: Case a study in Jakarta, Indonesia. Case Stud. Transp. Policy 2018. [Google Scholar] [CrossRef]
- Ruhlandt, R.W.S. The governance of smart cities: A systematic literature review. Cities 2018, 81, 1–23. [Google Scholar] [CrossRef]
- Shatu, F.; Yigitcanlar, T. Development and validity of a virtual street walkability audit tool for pedestrian route choice analysis—SWATCH. J. Transp. Geogr. 2018, 70, 148–160. [Google Scholar] [CrossRef]
- Soesanti, S.; Nakai, N. Street Network in Bandung City, Indonesia: Comparison between City Center and New Commercial Area. Int. Sch. Sci. Res. Innov. 2012, 4, 1104–1114. [Google Scholar]
- Sanders, P.; Zuidgeest, M.; Geurs, K. Liveable streets in Hanoi: A principal component analysis. Habitat Int. 2015, 49, 547–558. [Google Scholar] [CrossRef]
- Henderson, J. Making cities more walkable for tourists: A view from Singapore’s streets. Int. J. Tour. Cities 2018, 4, 285–297. [Google Scholar] [CrossRef]
- Kim, Y. Mandalay, Myanmar: The remaking of a South-east Asian hub in a country at the crossroads. Cities 2018, 72, 274–286. [Google Scholar] [CrossRef] [Green Version]
Cities | Area (km2) | Population (million) | Density/km2 | Cities | Area (km2) | Population (million) | Density/km2 |
---|---|---|---|---|---|---|---|
Bandar Seri Begawan, BN | 100 | 0.06 | 641 | Johor Bahru, MA | 220 | 1.5 | 6909 |
Battambang, KH | 115 | 0.16 | 1395 | Banyu Wangi, IND | 5783 | 1.60 | 277 |
Chonburi, TH | 43 | 0.22 | 5000 | Davao, PH | 2444 | 1.63 | 699 |
Siem Reap, KH | 425 | 0.27 | 632 | Makassar, IND | 199 | 1.77 | 7400 |
Phutket, TH | 543 | 0.40 | 719 | Manila City, PH | 39 | 1.78 | 46 |
Luang Prabang, Lao | 16,875 | 0.43 | 26 | Kuala Lumpur, MA | 243 | 1.80 | 7377 |
Kota Kinabalu, BN | 366 | 0.45 | 1290 | Phnom Penh, KH | 693 | 2.80 | 4040 |
Kuching, MA | 2031 | 0.68 | 336 | Yangon, MY | 576 | 5.21 | 9045 |
Vientiane, Lao | 130 | 0.70 | 209 | Singapore | 720 | 5.61 | 7796 |
Cebu, PH | 315 | 0.87 | 2761 | Hanoi, VN | 3359 | 7.60 | 2182 |
Naypyidaw, MY | 7054 | 0.93 | 131 | Ho Chi Minh City, VN | 2096 | 8.20 | 4025 |
Da Nang, VN | 1285 | 1.00 | 814 | Bangkok, TH | 1569 | 8.28 | 5300 |
Mandalay, MY | 285 | 1.23 | 4300 | Jakarta, IND | 662 | 10.10 | 15,367 |
Network Metrics | Definitions |
---|---|
Node | A point of intersection within a specific network. |
Edge | An interface between streets and the adjoining buildings and plots. |
Betweenness centrality | A prediction of how each street network (SN) links to possible shortest paths to pass through the node [38]. |
Closeness centrality | A sum of the distance from a node (origin) to all reachable nodes (destinations) in SNs [40]. |
Average street length | A linear proxy for block size that specifies the network’s grain [13]. |
Total street length | Sum of edge lengths in the undirected representation of the network. |
Total edge length | Sum of edge lengths in the network. |
Node density | The number of nodes in a network divided by area in km2. |
Edge density | Total edge length divided by area in km2. |
Street density | A measurement of the total street length divided by the areas in km2. |
Average streets per node | The average number of physical streets that emanate from each node (i.e., intersections or cul-de-sacs). Its distribution and proportion characterize the type, pervasiveness, and spatial dispersal of network connectedness and cul-de-sacs. |
Average circuity | A ratio of shortest network distances to straight-line distances between origin and destination. The average of circuity is at about 1.2 times the Euclidean distance for stylized road networks [9]. |
Cities | μd | µw | δd (m) | δw (m) | ∑d (km) | ∑w (km) | d | φ |
---|---|---|---|---|---|---|---|---|
Bandar Seri Begawan | 1.64 | 1.41 | 84.2 | 57.9 | 4.9 | 78.5 | 1.91 | 56.1% |
Banyu Wangi | 1.30 | 1.29 | 77.4 | 76.7 | 98.2 | 100.4 | 0.08 | 3.4% |
Bangkok | 1.38 | 1.33 | 78.1 | 58.7 | 120.9 | 197.5 | 0.41 | 15.0% |
Battambang | 1.46 | 1.42 | 122.8 | 107.5 | 91.5 | 100.1 | 0.30 | 8.6% |
Cebu | 1.32 | 1.25 | 86.2 | 63.2 | 136.1 | 181.3 | 0.54 | 26.1% |
Chonburi | 3.21 | 2.14 | 212.7 | 148.5 | 28.7 | 56.9 | 8.88 | 93.9% |
Da Nang | 1.35 | 1.31 | 92.7 | 82.3 | 112.1 | 137.6 | 0.37 | 14.4% |
Davao | 1.45 | 1.41 | 92.4 | 84.1 | 73.4 | 83.8 | 0.33 | 9.7% |
Hanoi | 1.41 | 1.28 | 95.4 | 54.6 | 115.0 | 182.1 | 1.07 | 45.9% |
Ho Chi Minh City | 1.49 | 1.30 | 97.0 | 60.4 | 107.3 | 168.6 | 1.60 | 64.4% |
Jakarta | 1.40 | 1.43 | 86.8 | 83.8 | 126.2 | 139.6 | −0.23 | −6.4% |
Johor Bahru | 1.39 | 1.30 | 83.9 | 64.6 | 135.0 | 177.2 | 0.78 | 31.2% |
Kota Kinabalu | 1.61 | 1.45 | 83.5 | 66.8 | 88.7 | 124.5 | 1.36 | 36.4% |
Kuala Lumpur | 1.91 | 1.50 | 122.8 | 74.5 | 120.6 | 206.3 | 3.41 | 82.1% |
Kuching | 1.29 | 1.28 | 63.9 | 50.6 | 83.5 | 139.0 | 0.11 | 4.8% |
Luang Prabang | 1.81 | 1.38 | 142.3 | 78.9 | 43.8 | 74.7 | 3.57 | 113.2% |
Makassar | 1.24 | 1.25 | 76.3 | 75.2 | 124.3 | 137.8 | −0.11 | −5.1% |
Mandalay | 1.26 | 1.35 | 99.4 | 102.6 | 126.6 | 145.3 | −0.71 | −24.5% |
Manila City | 1.32 | 1.26 | 92.2 | 72.7 | 146.1 | 180.5 | 0.52 | 24.2% |
Naypyidaw | 2.43 | 2.29 | 197.3 | 86.3 | 32.2 | 41.0 | 1.16 | 10.9% |
Phnom Penh | 1.38 | 1.32 | 104.5 | 69.9 | 113.7 | 171.9 | 0.53 | 19.9% |
Phuket | 1.54 | 1.46 | 99.8 | 88.9 | 85.8 | 104.2 | 0.69 | 18.0% |
Siem Reap | 1.48 | 1.40 | 117.0 | 91.1 | 95.6 | 113.1 | 0.69 | 20.7% |
Singapore | 1.61 | 1.30 | 107.2 | 50.4 | 110.1 | 252.8 | 2.66 | 103.3% |
Vientiane | 1.33 | 1.32 | 100.0 | 87.6 | 89.1 | 108.6 | 0.08 | 2.9% |
Yangon | 1.26 | 1.26 | 85.2 | 84.0 | 161.2 | 164.6 | 0.02 | 1.0% |
Measure | DSNs | WSNs | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
City | n | κ | η | ρ | γ (km) | ε (km) | λ (km) | α | β | n | κ | η | ρ | γ (km) | ε (km) | λ (km) | α | β | |
Bandar Seri Begawan | 337 | 297 | 59.7 | 52.6 | 10.0 | 7.2 | 84.2 | 2.95 | 0.05 | 944 | 798 | 167.1 | 141.3 | 27.2 | 13.9 | 57.9 | 2.89 | 0.02 | |
Banyu Wangi | 956 | 763 | 126.5 | 100.9 | 25.1 | 13.0 | 77.4 | 2.70 | 0.02 | 985 | 788 | 130.3 | 104.2 | 26.5 | 13.3 | 76.7 | 2.71 | 0.02 | |
Bangkok | 1165 | 915 | 142.3 | 111.7 | 23.7 | 14.8 | 78.1 | 2.72 | 0.02 | 2518 | 1989 | 307.5 | 242.9 | 47.9 | 24.1 | 58.7 | 2.70 | 0.01 | |
Battambang | 515 | 448 | 63.4 | 55.2 | 21.8 | 11.3 | 122.8 | 2.99 | 0.03 | 642 | 561 | 79.1 | 69.1 | 24.7 | 12.3 | 107.5 | 2.97 | 0.02 | |
Cebu | 1189 | 909 | 135.5 | 103.6 | 5.8 | 15.5 | 86.2 | 2.73 | 0.02 | 2265 | 1646 | 258.1 | 187.6 | 41.2 | 20.7 | 63.2 | 2.58 | 0.01 | |
Chonburi | 112 | 84 | 14.9 | 11.2 | 7.4 | 3.8 | 212.7 | 2.59 | 0.09 | 330 | 220 | 44.0 | 29.3 | 14.8 | 7.6 | 148.5 | 2.38 | 0.06 | |
Da Nang | 873 | 724 | 116.7 | 96.8 | 26.5 | 15.0 | 92.7 | 2.83 | 0.02 | 1237 | 992 | 165.3 | 132.6 | 36.7 | 18.4 | 82.3 | 2.76 | 0.02 | |
Davao | 565 | 503 | 96.3 | 85.8 | 24.3 | 12.5 | 92.4 | 2.92 | 0.03 | 702 | 624 | 119.7 | 106.4 | 28.5 | 14.3 | 84.1 | 2.92 | 0.03 | |
Hanoi | 862 | 71 | 97.6 | 81.3 | 22.0 | 13.0 | 95.4 | 2.90 | 0.02 | 2537 | 1857 | 286.5 | 209.7 | 40.8 | 20.6 | 54.6 | 2.67 | 0.01 | |
Ho Chi Minh City | 740 | 667 | 93.4 | 84.2 | 18.1 | 13.5 | 97.0 | 3.11 | 0.02 | 2078 | 1630 | 262.2 | 205.7 | 42.4 | 21.3 | 60.4 | 2.75 | 0.01 | |
Jakarta | 980 | 917 | 121.6 | 113.7 | 27.2 | 15.7 | 86.8 | 3.01 | 0.02 | 1120 | 1040 | 138.9 | 129.0 | 34.4 | 17.3 | 83.8 | 3.01 | 0.02 | |
Johor Bahru | 1202 | 1013 | 145.4 | 122.5 | 30.0 | 16.3 | 83.9 | 2.76 | 0.02 | 2071 | 1673 | 250.5 | 202.3 | 42.6 | 21.4 | 64.6 | 2.71 | 0.01 | |
Kota Kinabalu | 773 | 661 | 136.3 | 116.6 | 21.5 | 15.6 | 83.5 | 2.80 | 0.03 | 1402 | 1125 | 247.3 | 198.4 | 43.3 | 22.0 | 66.8 | 2.68 | 0.01 | |
Kuala Lumpur | 695 | 641 | 78.5 | 72.4 | 17.7 | 13.6 | 122.8 | 2.93 | 0.02 | 2072 | 1677 | 233.9 | 189.3 | 46.2 | 23.3 | 74.5 | 2.71 | 0.01 | |
Kuching | 1074 | 764 | 185.7 | 132.1 | 22.2 | 14.4 | 63.9 | 2.48 | 0.03 | 2124 | 1628 | 367.2 | 281.5 | 47.1 | 24.0 | 50.6 | 2.61 | 0.01 | |
Luang Prabang | 225 | 191 | 42.0 | 35.6 | 15.1 | 8.2 | 142.3 | 2.83 | 0.06 | 739 | 544 | 137.8 | 101.4 | 27.6 | 13.9 | 78.9 | 2.59 | 0.02 | |
Makassar | 1165 | 989 | 189.4 | 160.8 | 35.7 | 20.2 | 76.3 | 2.85 | 0.02 | 1331 | 1109 | 216.4 | 180.3 | 44.7 | 22.4 | 75.2 | 2.81 | 0.01 | |
Mandalay | 839 | 765 | 96.7 | 88.2 | 27.4 | 14.6 | 99.4 | 3.14 | 0.02 | 958 | 844 | 110.4 | 97.3 | 33.4 | 16.7 | 102.6 | 3.05 | 0.02 | |
Manila City | 1012 | 944 | 130.7 | 120.8 | 29.1 | 18.7 | 92.2 | 3.21 | 0.02 | 1671 | 1459 | 213.8 | 186.7 | 45.8 | 23.1 | 72.7 | 3.04 | 0.01 | |
Naypyidaw | 114 | 106 | 17.1 | 15.9 | 7.8 | 4.8 | 197.3 | 3.12 | 0.08 | 157 | 143 | 23.5 | 21.4 | 12.1 | 6.1 | 86.3 | 3.07 | 0.07 | |
Phnom Penh | 676 | 648 | 90.4 | 86.7 | 26.7 | 15.2 | 104.5 | 3.34 | 0.02 | 1672 | 1459 | 223.6 | 195.1 | 45.7 | 23.0 | 69.9 | 3.04 | 0.01 | |
Phutket | 659 | 510 | 78.5 | 60.8 | 18.8 | 10.2 | 99.8 | 2.66 | 0.03 | 899 | 686 | 107.1 | 81.7 | 24.5 | 12.4 | 88.9 | 2.66 | 0.02 | |
Siem Reap | 616 | 498 | 70.6 | 57.1 | 20.9 | 11.0 | 117.0 | 2.77 | 0.03 | 912 | 744 | 104.2 | 85.3 | 25.9 | 13.0 | 91.1 | 2.81 | 0.02 | |
Singapore | 677 | 644 | 86.7 | 82.4 | 15.9 | 14.1 | 107.2 | 3.14 | 0.03 | 3457 | 2987 | 442.6 | 382.4 | 64.3 | 32.4 | 50.4 | 2.54 | 0.01 | |
Vientiane | 653 | 540 | 92.6 | 76.6 | 22.7 | 12.6 | 100.0 | 2.81 | 0.02 | 924 | 744 | 131.1 | 105.5 | 30.7 | 15.4 | 87.6 | 2.75 | 0.02 | |
Yangon | 1205 | 1173 | 146.5 | 142.6 | 38.5 | 19.6 | 85.2 | 3.23 | 0.02 | 1252 | 1216 | 152.2 | 147.8 | 40.0 | 20.0 | 84.0 | 3.22 | 0.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, P.; Yen, Y.; Bailey, E.; Sohail, M.T. Analysis of Urban Drivable and Walkable Street Networks of the ASEAN Smart Cities Network. ISPRS Int. J. Geo-Inf. 2019, 8, 459. https://doi.org/10.3390/ijgi8100459
Zhao P, Yen Y, Bailey E, Sohail MT. Analysis of Urban Drivable and Walkable Street Networks of the ASEAN Smart Cities Network. ISPRS International Journal of Geo-Information. 2019; 8(10):459. https://doi.org/10.3390/ijgi8100459
Chicago/Turabian StyleZhao, Pengjun, Yat Yen, Earl Bailey, and Muhammad Tayyab Sohail. 2019. "Analysis of Urban Drivable and Walkable Street Networks of the ASEAN Smart Cities Network" ISPRS International Journal of Geo-Information 8, no. 10: 459. https://doi.org/10.3390/ijgi8100459
APA StyleZhao, P., Yen, Y., Bailey, E., & Sohail, M. T. (2019). Analysis of Urban Drivable and Walkable Street Networks of the ASEAN Smart Cities Network. ISPRS International Journal of Geo-Information, 8(10), 459. https://doi.org/10.3390/ijgi8100459