Analyzing the Spatiotemporal Patterns in Green Spaces for Urban Studies Using Location-Based Social Media Data
Abstract
:1. Introduction
2. Related Work
3. Materials
3.1. Study Area
3.2. Dataset
- The geographical location of the data must be in Shanghai;
- The minimum number of check-ins per park must be 100 in the study period;
- Each record must be geolocated (latitude and longitude), and the time, day, month, year, and gender must be included.
4. Methodology
4.1. Data Preparation
4.2. Social Media Data Analytics
4.2.1. Statistical Analysis
4.2.2. Temporal Analysis
4.2.3. Spatial Analysis
5. Results
6. Discussion
7. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Mougiakou, E.; Photis, Y.N. Urban green space network evaluation and planning: Optimizing accessibility based on connectivity and raster GIS analysis. Eur. J. Geogr. 2014, 5, 19–46. [Google Scholar]
- UN. World Urbanization Prospects; UN: New York, NY, USA, 2018. [Google Scholar]
- Hartig, T.; Kahn, P.H. Living in cities, naturally. J. Sci. 2016, 352, 938–940. [Google Scholar] [CrossRef] [PubMed]
- Kashef, M. Urban livability across disciplinary and professional boundaries. Front. Archit. Res. 2016, 5, 239–253. [Google Scholar] [CrossRef] [Green Version]
- Kovacs-Györi, A.; Ristea, A.; Kolcsar, R.; Resch, B.; Crivellari, A.; Blaschke, T. Beyond spatial proximity—Classifying parks and their visitors in London based on spatiotemporal and sentiment analysis of Twitter data. ISPRS Int. J. Geo Inf. 2018, 7, 378. [Google Scholar] [CrossRef]
- Saleem, A.; Kamboh, K. Why people visit parks? The role of gender, age and education among urban park visitors in Faisalabad. Int. J. Asian Soc. Sci. 2013, 3, 2196–2203. [Google Scholar]
- Giles-Corti, B.; Broomhall, M.H.; Knuiman, M.; Collins, C.; Douglas, K.; Ng, K.; Lange, A.; Donovan, R.J. Increasing walking: How important is distance to, attractiveness, and size of public open space? Am. J. Prev. Med. 2005, 28, 169–176. [Google Scholar] [CrossRef] [PubMed]
- UN Sustainable Development Goals. Available online: http://www.un.org/sustainabledevelopment/cities/ (accessed on 5 April 2019).
- Dadvand, P.; Sunyer, J.; Alvarez-Pedrerol, M.; Dalmau-Bueno, A.; Esnaola, M.; Gascon, M.; Pascual, M.D.C.; Basagaña, X.; Morgan, I.G.; Nieuwenhuijsen, M.J. Green spaces and spectacles use in schoolchildren in Barcelona. Environ. Res. 2017, 152, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Batty, M. The New Science of Cities; Mit Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Keniger, L.; Gaston, K.; Irvine, K.; Fuller, R. What are the benefits of interacting with nature? Int. J. Environ. Res. Public Health 2013, 10, 913–935. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253. [Google Scholar] [CrossRef]
- Sturm, R.; Cohen, D. Proximity to urban parks and mental health. J. Ment. Health Policy Econ. 2014, 17, 19. [Google Scholar] [PubMed]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, Ü.; Sawut, M.; Caetano, M. Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS J. Photogramm. Remote Sens. 2014, 89, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- Tyrväinen, L.; Ojala, A.; Korpela, K.; Lanki, T.; Tsunetsugu, Y.; Kagawa, T. The influence of urban green environments on stress relief measures: A field experiment. J. Environ. Psychol. 2014, 38, 1–9. [Google Scholar] [CrossRef]
- Bedimo-Rung, A.L.; Mowen, A.J.; Cohen, D.A. The significance of parks to physical activity and public health: A conceptual model. Am. J. Prev. Med. 2005, 28, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Takano, T.; Nakamura, K.; Watanabe, M. Urban residential environments and senior citizens’ longevity in megacity areas: The importance of walkable green spaces. J. Epidemiol. Community Health 2002, 56, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Kothencz, G.; Blaschke, T. Urban parks: Visitors’ perceptions versus spatial indicators. Land Use Policy 2017, 64, 233–244. [Google Scholar] [CrossRef]
- Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication (accessed on 14 June 2019).
- United Nations General Assembly Transforming OurWorld: The 2030 Agenda for Sustainable Development. 2015.
- Brantly, H.B. National Recreation and Park Association (NRPA). Vis. Leis. Bus. 1983, 2, 14. [Google Scholar]
- Casandra, C. 8 Reasons Why Parks are Important. Available online: http://www.gardinergreenribbon.com/why-parks-are-important/ (accessed on 14 May 2019).
- Weibo. Available online: https://www.weibo.com (accessed on 25 June 2019).
- Zhen, F.; Cao, Y.; Qin, X.; Wang, B. Delineation of an urban agglomeration boundary based on Sina Weibo microblog ‘check-in’data: A case study of the Yangtze River Delta. Cities 2017, 60, 180–191. [Google Scholar] [CrossRef]
- Demographia World Urban Area, 2019. Available online: http://www.demographia.com/db-worldua.pdf (accessed on 14 June 2019).
- Ummeh, S.; Toshio, K. Classification of Urban Parks and their Regional Characteristics in Dhaka City, Bangladesh. J. Environ. Sci. Eng. 2017, B6, 41–54. [Google Scholar]
- Jim, C.Y.; Chen, W.Y. Perception and attitude of residents toward Urban green space in Guangzhou (China). Environ. Manag. 2006, 38, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; de Groot, R.; Bakker, F.; Wörtche, H.; Leemans, R. Thermal comfort in urban green spaces: A survey on a Dutch university campus. Int. J. Biometeorol. 2017, 61, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Hartig, T.; Mitchell, R.; De Vries, S.; Frumkin, H. Nature and health. Annu. Rev. Public Health 2014, 35, 207–228. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Hong, I. Measuring spatial accessibility in the context of spatial disparity between demand and supply of urban park service. Landsc. Urban Plan. 2013, 119, 85–90. [Google Scholar] [CrossRef]
- La Rosa, D. Accessibility to green spaces: GIS based indicators for sustainable planning in a dense urban context. Ecol. Indic. 2014, 42, 122–134. [Google Scholar] [CrossRef]
- Gould, P.R. Spatial Diffusion, Resource Paper No. 4; Association of American Geographers: Washington, DC, USA, 1969. [Google Scholar]
- Wolch, J.; Wilson, J.P.; Fehrenbach, J. Parks and park funding in Los Angeles: An equity-mapping analysis. Urban Geogr. 2005, 26, 4–35. [Google Scholar] [CrossRef]
- Hasan, S.; Ukkusuri, S.V. Urban activity pattern classification using topic models from online geo-location data. Transp. Res. Part C Emerg. Technol. 2014, 44, 363–381. [Google Scholar] [CrossRef]
- Longley, P.A.; Adnan, M. Geo-temporal Twitter demographics. Int. J. Geogr. Inf. Sci. 2016, 30, 369–389. [Google Scholar] [CrossRef]
- Frank, M.R.; Mitchell, L.; Dodds, P.S.; Danforth, C.M. Happiness and the patterns of life: A study of geolocated tweets. Sci. Rep. 2013, 3, 2625. [Google Scholar] [CrossRef] [PubMed]
- Campagna, M. The geographic turn in Social Media: opportunities for spatial planning and Geodesign. In Proceedings of the International Conference on Computational Science and Its Applications, Guimarães, Portugal, 30 June–3 July 2014; pp. 598–610. [Google Scholar]
- Sagl, G.; Resch, B.; Hawelka, B.; Beinat, E. From social sensor data to collective human behaviour patterns: Analysing and visualising spatio-temporal dynamics in urban environments. In Proceedings of the GI-Forum; Herbert Wichmann Verlag: Berlin, Germany, 2012; pp. 54–63. [Google Scholar]
- Lowry, P.B.; Cao, J.; Everard, A. Privacy concerns versus desire for interpersonal awareness in driving the use of self-disclosure technologies: The case of instant messaging in two cultures. J. Manag. Inf. Syst. 2011, 27, 163–200. [Google Scholar] [CrossRef]
- Smiley, M.J.; Roux, A.V.D.; Brines, S.J.; Brown, D.G.; Evenson, K.R.; Rodriguez, D.A. A spatial analysis of health-related resources in three diverse metropolitan areas. Health Place 2010, 16, 885–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thornton, L.E.; Pearce, J.R.; Macdonald, L.; Lamb, K.E.; Ellaway, A. Does the choice of neighbourhood supermarket access measure influence associations with individual-level fruit and vegetable consumption? A case study from Glasgow. Int. J. Health Geogr. 2012, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Thornton, L.E.; Pearce, J.R.; Kavanagh, A.M. Using Geographic Information Systems (GIS) to assess the role of the built environment in influencing obesity: A glossary. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 71. [Google Scholar] [CrossRef] [PubMed]
- King, T.L.; Thornton, L.E.; Bentley, R.J.; Kavanagh, A.M. The use of kernel density estimation to examine associations between neighborhood destination intensity and walking and physical activity. PLoS ONE 2015, 10, e0137402. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.; Roux, A.V.D.; Auchincloss, A.; Evenson, K.R.; Kaufman, J.; Mujahid, M.; Williams, K. Home and work neighbourhood environments in relation to body mass index: The Multi-Ethnic Study of Atherosclerosis (MESA). Epidemiol. Community Health 2013, 67, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Jones-Smith, J.C.; Karter, A.J.; Warton, E.M.; Kelly, M.; Kersten, E.; Moffet, H.H.; Adler, N.; Schillinger, D.; Laraia, B.A. Obesity and the food environment: Income and ethnicity differences among people with diabetes: The Diabetes Study of Northern California (DISTANCE). Diabetes Care 2013, 36, 2697–2705. [Google Scholar] [CrossRef] [PubMed]
- Buck, C.; Börnhorst, C.; Pohlabeln, H.; Huybrechts, I.; Pala, V.; Reisch, L.; Pigeot, I. Clustering of unhealthy food around German schools and its influence on dietary behavior in school children: A pilot study. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, F.; Li, X.; Wang, P.; Liang, J.; Mei, Y.; Cheng, W.; Qian, Y. Spatiotemporal patterns of the use of urban green spaces and external factors contributing to their use in central Beijing. Int. J. Environ. Res. Public Health 2017, 14, 237. [Google Scholar] [CrossRef] [PubMed]
- Kovacs-Gyori, A.; Ristea, A.; Havas, C.; Resch, B.; Cabrera-Barona, P. London2012: Towards citizen-contributed urban planning through sentiment analysis of twitter data. Urban Plan. 2018, 3, 75–99. [Google Scholar] [CrossRef]
- Li, Z.; Wu, F. Tenure-based residential segregation in post-reform Chinese cities: A case study of Shanghai. Trans. Inst. Br. Geogr. 2008, 33, 404–419. [Google Scholar] [CrossRef]
- Li, J.; Fang, W.; Wang, T.; Qureshi, S.; Alatalo, J.; Bai, Y. Correlations between socioeconomic drivers and indicators of urban expansion: Evidence from the heavily urbanised shanghai metropolitan area, China. Sustainability 2017, 9, 1199. [Google Scholar] [CrossRef]
- Guo, R. Regional China: A Business and Economic Handbook; Springer: Berlin, Germany, 2013. [Google Scholar]
- NBS National Bureau of Statistics. Sixth National Population Census of the People’s Republic of China; NBS: Beijing, China, 2010. [Google Scholar]
- Xiao, Y.; Wang, Z.; Li, Z.; Tang, Z. An assessment of urban park access in Shanghai—Implications for the social equity in urban China. Landsc. Urban Plan. 2017, 157, 383–393. [Google Scholar] [CrossRef]
- Chiquet, C.; Dover, J.W.; Mitchell, P. Birds and the urban environment: The value of green walls. Urban Ecosyst. 2013, 16, 453–462. [Google Scholar] [CrossRef]
- Weibo Statistics. Available online: http://ir.weibo.com/news-releases/news-release-details/weibo-corporation-report-fourth-quarter-and-fiscal-year-2018 (accessed on 10 June 2019).
- Rizwan, M.; Wan, W.; Cervantes, O.; Gwiazdzinski, L. Using location-based social media data to observe check-in behavior and gender difference: Bringing weibo data into play. ISPRS Int. J. Geo Inf. 2018, 7, 196. [Google Scholar] [CrossRef]
- Xie, Z.; Yan, J. Kernel density estimation of traffic accidents in a network space. Comput. Environ. Urban Syst. 2008, 32, 396–406. [Google Scholar] [CrossRef]
- Chen, Z.; Luo, N.; Gao, T. Research of typhoon disaster assessment based on VGI [J]. Geomat. Spat. Inf. Technol. 2016, 10, 33–34. [Google Scholar]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: Abingdon, UK, 2018. [Google Scholar]
- Wu, C.; Ye, X.; Ren, F.; Wan, Y.; Ning, P.; Du, Q. Spatial and social media data analytics of housing prices in Shenzhen, China. PLoS ONE 2016, 11, e0164553. [Google Scholar] [CrossRef] [PubMed]
- King, T.L.; Bentley, R.J.; Thornton, L.E.; Kavanagh, A.M. Using kernel density estimation to understand the influence of neighbourhood destinations on BMI. BMJ Open 2016, 6, e008878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasan, S.; Zhan, X.; Ukkusuri, S.V. Understanding urban human activity and mobility patterns using large-scale location-based data from online social media. In Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, Chicago, IL, USA, 11 August 2013; p. 6. [Google Scholar]
- Li, L.; Goodchild, M.F.; Xu, B. Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr. Cartogr. Geogr. Inf. Sci. 2013, 40, 61–77. [Google Scholar] [CrossRef]
- Sun, Y.; Fan, H.; Li, M.; Zipf, A. Identifying the city center using human travel flows generated from location-based social networking data. Environ. Plan. B Plan. 2016, 43, 480–498. [Google Scholar] [CrossRef]
- Li, H.; Ge, Y.; Hong, R.; Zhu, H. Point-of-interest recommendations: Learning potential check-ins from friends. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 975–984. [Google Scholar]
- Maroko, A.R.; Maantay, J.A.; Sohler, N.L.; Grady, K.L.; Arno, P.S. The complexities of measuring access to parks and physical activity sites in New York City: A quantitative and qualitative approach. Int. J. Health Geogr. 2009, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.; Almeida, J.; Almeida, V. Identifying user behavior in online social networks. In Proceedings of the 1st Workshop on Social Network Systems, Glasgow, Scotland, 1 April 2008; pp. 1–6. [Google Scholar]
- Van Iddekinge, C.H.; Lanivich, S.E.; Roth, P.L.; Junco, E. Social media for selection? Validity and adverse impact potential of a Facebook-based assessment. J. Manag. 2016, 42, 1811–1835. [Google Scholar] [CrossRef]
- Roberts, H.; Sadler, J.; Chapman, L. Using Twitter to investigate seasonal variation in physical activity in urban green space. Geo Geogr. Environ. 2017, 4, e00041. [Google Scholar] [CrossRef]
- Ramaiah, M.; Avtar, R. Urban green spaces and their need in cities of rapidly urbanizing India: A review. Urban Sci. 2019, 3, 94. [Google Scholar] [CrossRef]
Date | Weather | Air Temperature | Wind Direction | Sunny (Days) | Rain (Days) | Cloudy (Days) | Average (Month) |
---|---|---|---|---|---|---|---|
1 July 2016 | Overcast/cloudy | 34/26 °C | South wind 3–4/south wind 3–4 | 09 | 16 | 09 | 34/27 °C |
9 August 2016 | Shower/thunder shower | 33/28 °C | Dongfeng ≤3/Southeast 3–4 | 05 | 12 | 21 | 33/27 °C |
2 September 2016 | Cloudy/cloudy | 35/25 °C | West wind ≤3/Dongfeng ≤3 | 01 | 16 | 15 | 28/23 °C |
5 January 2017 | Moderate rain/light rain | 12/10 °C | Dongfeng ≤3/Dongfeng ≤3 | 08 | 08 | 19 | 10/05 °C |
14 March 2017 | Sunny/clear | 12/5 °C | North wind ≤3/north wind ≤3 | 06 | 09 | 17 | 14/18 °C |
17 June 2017 | Sunny/cloudy | 29/21 °C | Dongfeng ≤3/Dongfeng ≤3 | 04 | 015 | 17 | 28/22 °C |
Building_id | User_id | Month | Date | Day | Time | Year | Gender | Lon | Lat | Address |
---|---|---|---|---|---|---|---|---|---|---|
B2094554D064ABF4429 | ### | 08 | 24 | Wed | 0:00:03 | 2016 | F | 121.6650 | 31.14363 | ZhaoHang_Park |
B2094757D06FA0F8409D | ### | 11 | 11 | Frit | 1:24:45 | 2016 | F | 121.5244 | 31.265614 | Jiangpu_Park |
B2094757D06FA6FB409B | ### | 05 | 29 | Mon | 3:02:19 | 2017 | M | 121.3787 | 31.34228 | Gucun_Park |
Month | Weekdays | Gender | Hours | Date | Year | |
---|---|---|---|---|---|---|
Month | 1 | 0.004 | 0.027 ** | −0.019 ** | −0.028 ** | −0.806 ** |
Week Days | 0.004 | 1 | 0 | 0.030 ** | −0.037 ** | −0.01 |
Gender | 0.027 ** | 0 | 1 | −0.037 ** | 0.002 | −0.050 ** |
Hours | −0.019 ** | 0.030 ** | −0.037 ** | 1 | −0 | 0.006 |
Date | −0.028 ** | −0.037 ** | 0.002 | -0.002 | 1 | −0.017 ** |
Year | −0.806 ** | −0.007 | −0.050 ** | 0.006 | −0.017 ** | 1 |
Mean | Std. Deviation | |
---|---|---|
Month | 6.17 | 2.825 |
Weekdays | 4.3 | 2.111 |
Gender | 0.35 | 0.478 |
Hours | 14.58 | 5.648 |
Date | 15.54 | 8.79 |
Year | 2016.7 | 0.47 |
Mean | Median | Std. Deviation | Min | Q1 | Q3 | Max |
---|---|---|---|---|---|---|
6.17 | 6 | 2.825 | 1 | 4 | 8 | 12 |
Month | Frequency | Percent | Valid Percent | Cumulative Percent |
---|---|---|---|---|
Jan | 1212 | 3.9 | 3.9 | 3.9 |
Feb | 1375 | 4.7 | 4.7 | 8.6 |
Mar | 2098 | 6.9 | 6.9 | 15.5 |
Apr | 4488 | 15.2 | 15.2 | 30.7 |
May | 4457 | 14.9 | 14.9 | 45.6 |
Jun | 3840 | 12.8 | 12.8 | 58.5 |
Jul | 4325 | 14.6 | 14.6 | 73.1 |
Aug | 1668 | 5.6 | 5.6 | 78.8 |
Sep | 1510 | 4.9 | 4.9 | 83.7 |
Oct | 1863 | 6.1 | 6.1 | 89.8 |
Nov | 1494 | 5.1 | 5.1 | 94.9 |
Dec | 1560 | 5.1 | 5.1 | 100 |
Day | Check-in % | Female | Male | dr |
---|---|---|---|---|
Mon | 14.26% | 9.26% | 4.998% | 0.597 |
Tue | 12.26% | 8.03% | 4.232% | 0.619 |
Wed | 11.43% | 7.22% | 4.229% | 0.522 |
Thu | 11.75% | 7.60% | 4.108% | 0.596 |
Fri | 12.66% | 8.29% | 4.365% | 0.620 |
Sat | 17.37% | 11.23% | 6.149% | 0.584 |
Sun | 20.27% | 13.18% | 7.109% | 0.598 |
District | Check-in % | Female | Male | dr |
---|---|---|---|---|
Baoshan | 7.06% | 4.47% | 2.581% | 0.540 |
Changning | 6.26% | 3.98% | 2.287% | 0.540 |
Fengxian | 1.45% | 0.92% | 0.507% | 0.579 |
Hongkou | 2.51% | 1.45% | 1.061% | 0.309 |
Huangpu | 7.86% | 4.89% | 2.970% | 0.488 |
Jiading | 4.27% | 2.59% | 1.694% | 0.418 |
Jingan | 2.86% | 1.75% | 1.110% | 0.448 |
Minhang | 10.32% | 6.47% | 3.855% | 0.506 |
Pudong New Area | 29.66% | 18.84% | 10.823% | 0.540 |
Putuo | 8.63% | 5.22% | 3.424% | 0.415 |
Qingpu | 1.67% | 1.08% | 0.591% | 0.585 |
Songjiang | 9.38% | 6.23% | 3.345% | 0.602 |
Xuhui | 3.72% | 2.22% | 1.504% | 0.384 |
Yangpu | 4.35% | 2.58% | 1.777% | 0.368 |
District | Female | Male | Difference | ||||
---|---|---|---|---|---|---|---|
N | Mean | STD-Dev | N | Mean | STD-Dev | ||
Baoshan | 1195 | 0.57 | 0.012 | 915 | 0.43 | 0.052 | 0.14 |
Changning | 1186 | 0.63 | 0.011 | 685 | 0.36 | 0.062 | 0.27 |
Fengxian | 280 | 0.65 | 0.021 | 153 | 0.35 | 0.132 | 0.30 |
Hongkou | 424 | 0.57 | 0.021 | 326 | 0.43 | 0.126 | 0.14 |
Huangpu | 1444 | 0.61 | 0.010 | 905 | 0.39 | 0.054 | 0.22 |
Jiading | 783 | 0.61 | 0.014 | 493 | 0.39 | 0.073 | 0.22 |
Jingan | 601 | 0.70 | 0.012 | 254 | 0.30 | 0.107 | 0.40 |
Minhang | 1980 | 0.64 | 0.008 | 1104 | 0.36 | 0.049 | 0.28 |
Pudong New Area | 6113 | 0.69 | 0.004 | 2752 | 0.31 | 0.032 | 0.38 |
Putuo | 1588 | 0.62 | 0.010 | 991 | 0.38 | 0.051 | 0.24 |
Qingpu | 378 | 0.75 | 0.013 | 125 | 0.25 | 0.156 | 0.50 |
Songjiang | 1774 | 0.63 | 0.009 | 1029 | 0.37 | 0.051 | 0.26 |
Xuhui | 647 | 0.58 | 0.016 | 465 | 0.42 | 0.073 | 0.16 |
Yangpu | 755 | 0.58 | 0.015 | 545 | 0.42 | 0.068 | 0.16 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, H.; Wan, W.; Ali Haidery, S.; Khan, N.U.; Ebrahimpour, Z.; Luo, T. Analyzing the Spatiotemporal Patterns in Green Spaces for Urban Studies Using Location-Based Social Media Data. ISPRS Int. J. Geo-Inf. 2019, 8, 506. https://doi.org/10.3390/ijgi8110506
Ullah H, Wan W, Ali Haidery S, Khan NU, Ebrahimpour Z, Luo T. Analyzing the Spatiotemporal Patterns in Green Spaces for Urban Studies Using Location-Based Social Media Data. ISPRS International Journal of Geo-Information. 2019; 8(11):506. https://doi.org/10.3390/ijgi8110506
Chicago/Turabian StyleUllah, Hidayat, Wanggen Wan, Saqib Ali Haidery, Naimat Ullah Khan, Zeinab Ebrahimpour, and Tianhang Luo. 2019. "Analyzing the Spatiotemporal Patterns in Green Spaces for Urban Studies Using Location-Based Social Media Data" ISPRS International Journal of Geo-Information 8, no. 11: 506. https://doi.org/10.3390/ijgi8110506
APA StyleUllah, H., Wan, W., Ali Haidery, S., Khan, N. U., Ebrahimpour, Z., & Luo, T. (2019). Analyzing the Spatiotemporal Patterns in Green Spaces for Urban Studies Using Location-Based Social Media Data. ISPRS International Journal of Geo-Information, 8(11), 506. https://doi.org/10.3390/ijgi8110506