Using Landsat OLI and Random Forest to Assess Grassland Degradation with Aboveground Net Primary Production and Electrical Conductivity Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Study Area Descriptions
2.1.2. Remote Sensing and Pre-Processing
2.1.3. Field Data and Samplings’ Processing
2.2. Methods
2.2.1. Object-Based Image Analysis (OBIA) and Decision Tree
2.2.2. Random Forest Regression
- (1)
- Create a fishnet structure covering the region of grassland with a cell size of 2500 m and then extract the center point of each cell to represent the locations (Figure 4a).
- (2)
- Assign each center point an RMSE value that is calculated based on values of sample locations. The value of the center points is the average RMSE value of multiple sampling points; the sampling points are close to the center points with a control distance (Figure 4b), which is set as 3000 m based on the area of the study area and density of sampling points in this study.
- (3)
- Move window to the next point until all center points are processed (Figure 4c).
- (4)
- Delete points with null value and generate the spatial uncertainty of the model by the spatial analysis tools.
2.2.3. Grassland Degradation Model from the Principal Component Analysis
3. Results
3.1. Random Forest Modeling for EC and ANPP
3.2. Spatial Distribution of ANPP and EC Using RF
3.3. Assessment of Grassland Degradation
4. Discussion
4.1. Random Forest versus Partial Least Squares Regression
4.2. The Importance of Soil Salinity
4.3. Uncertainties of Grassland Degradation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Piao, S.; Fang, J.; He, J.; Xiao, Y. Spatial distribution of grassland biomass in China. Acta Phyto Sin. 2004, 28, 491–498. (In Chinese) [Google Scholar]
- Scurlock, J.M.; Johnson, K.; Olson, R.J. Estimating net primary productivity from grassland biomass dynamics measurements. Glob. Chang. Biol. 2002, 8, 736–753. [Google Scholar] [CrossRef]
- Carlier, L.; Rotar, I.; Vlahova, M.; Vidican, R. Importance and functions of grasslands. Not. Bot. Horti Agrobot. Cluj Napoca 2009, 37, 25–30. [Google Scholar]
- Sperling, K. What Are the Functions of the Grassland Ecosystem. Available online: https://sciencing.com/functions-grassland-ecosystem-5681746.html (accessed on 2 December 2018).
- Wang, Z.; Deng, X.Z.; Song, W.; Li, Z.H.; Chen, J.C. What is the main cause of grassland degradation? A case study of grassland ecosystem service in the middle-south Inner Mongolia. Catena 2017, 150, 100–107. [Google Scholar] [CrossRef]
- Hao, L.; Sun, G.; Liu, Y.; Gao, Z.; He, J.; Shi, T.; Wu, B. Effects of precipitation on grassland ecosystem restoration under grazing exclusion in Inner Mongolia, China. Landsc. Ecol. 2014, 29, 1657–1673. [Google Scholar] [CrossRef]
- Fei, L.; Zhang, S.; Yang, J.; Chang, L.; Yang, H.; Bu, K. Effects of land use change on ecosystem services value in West Jilin since the reform and opening of China. Ecosyst. Serv. 2018, 31, 12–20. [Google Scholar] [CrossRef]
- Feng, Y.; Lu, Q.; Tokola, T.; Liu, H.; Wang, X. Assessment of Grassland Degradation in Guinan County, Qinghai Province, China, in the Past 30 Years. Land Degrad. Dev. 2009, 20, 55–68. [Google Scholar] [CrossRef]
- Wang, Z.; Song, K.; Zhang, B.; Liu, D.; Ren, C.; Luo, L.; Yang, T.; Huang, N.; Hu, L.; Yang, H.; et al. Shrinkage and fragmentation of grasslands in the West Songnen Plain, China. Agric. Ecosyst. Environ. 2009, 129, 315–324. [Google Scholar] [CrossRef]
- Andrade, B.O.; Koch, C.; Boldrini, I.I.; Velez-Martin, E.; Hasenack, H.; Hermann, J.M.; Kollmann, J.; Pillar, V.D.; Overbeck, G.E. Grassland degradation and restoration: A conceptual framework of stages and thresholds illustrated by southern Brazilian grasslands. Nat. Conserv. 2015, 13, 95–104. [Google Scholar] [CrossRef]
- Liu, J.; Diamond, J. China’s environment in a globalizing world. Nature 2005, 435, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Dai, G.; Ulgiati, S.; Zhang, Y.; Yu, B.; Kang, M.; Jin, Y.; Dong, X.; Zhang, X. The false promises of coal exploitation: How mining affects herdsmen well-being in the grassland ecosystems of Inner Mongolia. Energy Policy 2014, 67, 146–153. [Google Scholar] [CrossRef]
- Fang, L.; Zhang, B.; Su, W.; He, Y.; Wang, Z.; Song, K.; Liu, D.; Liu, Z. Sandy desertification change and its driving forces in western Jilin Province, North China. Environ. Monit. Assess. 2008, 136, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Vincent, B.; Yang, J.; Bouarfa, S.; Vidal, A. Remote Sensing Monitoring of Changes in Soil Salinity: A Case Study in Inner Mongolia, China. Sensors 2008, 8, 7035–7049. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Wang, C.Z.; Zang, S.Y.; Zhang, Y.H.; Hao, Q.N.; Wu, Y.X. Remote Sensing of Soil Alkalinity and Salinity in the Wuyu’er-Shuangyang River Basin, Northeast China. Remote Sens. 2016, 8, 163. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Z.; Zhou, Q.; Zhao, X.; Liu, B. Spatial pattern and its analysis of China’s grassland change in recent ten years using remote sensing and GIS. J. Remote Sens. 2003, 7, 428–432. (In Chinese) [Google Scholar]
- Drummond, M.A. Regional dynamics of grassland change in the western Great Plains. Gt. Plains Res. 2007, 17, 133–144. [Google Scholar]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef]
- Nendel, C.; Hu, Y.; Lakes, T. Land-use change and land degradation on the Mongolian Plateau from 1975 to 2015—A case study from Xilingol, China. Land Degrad. Dev. 2018, 29, 1595–1606. [Google Scholar]
- Hou, X.; Zhuang, D.; Yu, X. Grassland Change and Its Spatial Patterns in Xinjiang in 1990s. Acta Geogr. Sin. 2004, 59, 409–417. (In Chinese) [Google Scholar]
- Li, F.; Jiang, L.; Wang, X.; Zhang, X.; Zheng, J.; Zhao, Q. Estimating grassland aboveground biomass using multitemporal MODIS data in the West Songnen Plain, China. J. Appl. Remote Sens. 2013, 7, 073546. [Google Scholar] [CrossRef]
- Gao, Q.; Wan, Y.; Xu, H.; Li, Y.; Wang, J.; Borjigidai, A. Alpine grassland degradation index and its response to recent climate variability in Northern Tibet, China. Quat. Int. 2010, 226, 143–150. [Google Scholar] [CrossRef]
- Liu, Y.; Zha, Y.; Gao, J.; Ni, S. Assessment of grassland degradation near Lake Qinghai, West China, using Landsat TM and in situ reflectance spectra data. Int. J. Remote Sens. 2004, 25, 4177–4189. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, K.; Yang, Y.; Li, J.; Zhang, Y.; Zhang, C. Research on the quantitative evaluation of grassland degradation and spatial and temporal distribtution on the Mongolia Plateau. Partacult. Sci. 2018, 35, 233–243. [Google Scholar]
- Tarantino, C.; Adamo, M.; Lucas, R.; Blonda, P. Detection of changes in semi-natural grasslands by cross correlation analysis with WorldView-2 images and new Landsat 8 data. Remote Sens. Environ. 2016, 175, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.J.; Fan, W.J.; Cui, Y.K.; Zhou, L.; Yan, B.Y.; Wu, D.H.; Xu, X.R. Hyperspectral Remote Sensing Monitoring of Grassland Degradation. Spectrosc. Spectr. Anal. 2010, 30, 2734–2738. [Google Scholar]
- Liu, J.Y.; Xu, X.L.; Shao, Q.Q. Grassland degradation in the “Three-River Headwaters” region, Qinghai Province. J. Geogr. Sci. 2008, 18, 259–273. [Google Scholar] [CrossRef]
- Lu, B.; He, Y. Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland. ISPRS J. Photogramm. Remote Sens. 2017, 128, 73–85. [Google Scholar] [CrossRef]
- Zhang, X.F.; Niu, J.M.; Buyantuev, A.; Zhang, Q.; Dong, J.J.; Kang, S.; Zhang, J. Understanding Grassland Degradation and Restoration from the Perspective of Ecosystem Services: A Case Study of the Xilin River Basin in Inner Mongolia, China. Sustainability 2016, 8, 594. [Google Scholar] [CrossRef] [Green Version]
- Jing, L.; Jian, W. Estimating Plant Biomass in Jun Ma Chang of Shandan County Using Landsat TM Data. Remote Sens. Technol. Appl. 2011, 19, 343–347. [Google Scholar]
- Imhoff, M.L.; Bounoua, L.; Ricketts, T.; Loucks, C.; Harriss, R.; Lawrence, W.T. Global patterns in human consumption of net primary production. Nature 2004, 429, 870–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, L.; Wang, Z.; Mao, D.; Lou, Y.; Ren, C.; Song, K. Response of grassland net primary productivity in western Songnen Plain of northeast China to climate change and human activity. Chin. J. Ecol. 2012, 31, 1533–1540. [Google Scholar]
- Knapp, A.K.; Smith, M.D. Variation among biomes in temporal dynamics of aboveground primary production. Science 2001, 291, 481–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piao, S.; Fang, J. Terrestrial net primary production and its spatio-temporal patterns in Qinghai-Xizang Plateau, China during 1982–1999. J. Nat. Conserv. 2002, 17, 373–380. [Google Scholar]
- Li, J.; Yang, X.; Jin, Y.; Yang, Z.; Huang, W.; Zhao, L.; Gao, T.; Yu, H.; Ma, H.; Qin, Z.; et al. Monitoring and analysis of grassland desertification dynamics using Landsat images in Ningxia, China. Remote Sens. Environ. 2013, 138, 19–26. [Google Scholar] [CrossRef]
- Lin, J.; Wang, J.; Li, X.; Zhang, Y.; Xu, Q.; Mu, C. Effects of saline and alkaline stresses in varying temperature regimes on seed germination of Leymus chinensis from the Songnen Grassland of China. Grass Forage Sci. 2011, 66, 578–584. [Google Scholar] [CrossRef]
- Wu, L.; Li, Q. Research of mechanism of saline desertification in Western Songnen Plain. J. Soil Water Conserv. 2003, 17, 79–81. (In Chinese) [Google Scholar]
- Yu, H.; Liu, M.; Du, B.; Wang, Z.; Hu, L.; Zhang, B. Mapping Soil Salinity/Sodicity by using Landsat OLI Imagery and PLSR Algorithm over Semiarid West Jilin Province, China. Sensors 2018, 18, 1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, D.M.; Wang, G.Q.; Xue, B.L.; Liu, T.X.; A, Y.L.; Xu, X.Y. Evaluation of semiarid grassland degradation in North China from multiple perspectives. Ecol. Eng. 2018, 112, 41–50. [Google Scholar] [CrossRef]
- Jiang, S.; Zhou, D.; Jin, Y. Characteristic of moisture and salt dynamic in saline-alkalized grassland of Songnen Plain during thawing period. J. Northeast Norm. Univ. 2006, 38, 124. (In Chinese) [Google Scholar]
- Eldridge, D.J.; Wong, V.N.L. Clumped and isolated trees influence soil nutrient levels in an Australian temperate box woodland. Plant Soil 2005, 270, 331–342. [Google Scholar] [CrossRef]
- Farifteh, J.; Van der Meer, F.; Atzberger, C.; Carranza, E.J.M. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sens. Environ. 2007, 110, 59–78. [Google Scholar] [CrossRef]
- Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Ramoelo, A.; Cho, M.A.; Mathieu, R.; Madonsela, S.; Van De Kerchove, R.; Kaszta, Z.; Wolff, E. Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 43–54. [Google Scholar] [CrossRef]
- Barandiaran, I. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1–22. [Google Scholar]
- Chen, L.; Wang, Y.; Ren, C.; Zhang, B.; Wang, Z. Assessment of multi-wavelength SAR and multispectral instrument data for forest aboveground biomass mapping using random forest kriging. For. Ecol. Manag. 2019, 447, 12–25. [Google Scholar] [CrossRef]
- Ma, H.; Lv, B.; Li, X.; Liang, Z. Germination Response to Differing Salinity Levels for 18 Grass Species from the Saline-alkaline Grasslands of the Songnen Plain, China. Pak. J. Bot. 2014, 46, 1147–1152. [Google Scholar]
- Liu, B.; Guo, J. The Grassland Ecosystem Services Value in the West Jilin Province. Grassl. China 2005, 27, 2–21. (In Chinese) [Google Scholar]
- Wang, Z.; Zhang, Y.; Zhang, B.; Song, K.; Guo, Z.; Liu, D.; Li, F. Landscape dynamics and driving factors in Da’an County of Jilin Province in Northeast China during 1956–2000. Chin. Geogr. Sci. 2008, 18, 137–145. [Google Scholar] [CrossRef]
- Moiwo, J.P.; Lu, W.; Zhao, Y.; Yang, Y.; Yang, Y. Impact of land use on distributed hydrological processes in the semi-arid wetland ecosystem of Western Jilin. Hydrol. Process. 2010, 24, 492–503. [Google Scholar] [CrossRef]
- Mao, D.; He, X.; Wang, Z.; Tian, Y.; Xiang, H.; Yu, H.; Man, W.; Jia, M.; Ren, C.; Zheng, H. Diverse policies leading to contrasting impacts on land cover and ecosystem services in Northeast China. J Clean. Prod. 2019, 240, 117961. [Google Scholar] [CrossRef]
- Cao, C.Y.; Zhang, Y.; Qian, W.; Liang, C.P.; Wang, C.M.; Tao, S. Land-use changes influence soil bacterial communities in a meadow grassland in Northeast China. Solid Earth 2017, 8, 1119–1129. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Zhang, S.; Bu, K.; Yang, J.; Wang, Q.; Chang, L. The relationships between land use change and demographic dynamics in western Jilin province. J. Geogr. Sci. 2015, 25, 617–636. [Google Scholar] [CrossRef]
- Wu, W.; Mhaimeed, A.S.; Al-Shafie, W.M.; Ziadat, F.; Dhehibi, B.; Nangia, V.; De Pauw, E. Mapping soil salinity changes using remote sensing in Central Iraq. Geoderma Reg. 2014, 2–3, 21–31. [Google Scholar] [CrossRef]
- Shrestha, R.P. Relating soil electrical conductivity to remote sensing and other soil properties for assessing soil salinity in northeast Thailand. Land Degrad. Dev. 2006, 17, 677–689. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Wang, C.; Mao, D.; Zhang, Y. A New Vegetation Index to Detect Periodically Submerged Mangrove Forest Using Single-Tide Sentinel-2 Imagery. Remote Sens. 2019, 11, 2043. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Huete, A.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sen. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Alhammadi, M.S.; Glenn, E.P. Detecting date palm trees health and vegetation greenness change on the eastern coast of the United Arab Emirates using SAVI. Int. J. Remote Sens. 2008, 29, 1745–1765. [Google Scholar] [CrossRef]
- Bouaziz, M.; Matschullat, J.; Gloaguen, R. Improved remote sensing detection of soil salinity from a semi-arid climate in Northeast Brazil. CR Geosci. 2011, 343, 795–803. [Google Scholar] [CrossRef]
- Douaoui, A.E.K.; Nicolas, H.; Walter, C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma 2006, 134, 217–230. [Google Scholar] [CrossRef]
- Byrne, K.M.; Lauenroth, W.K.; Adler, P.B.; Byrne, C.M. Estimating aboveground net primary production in grasslands: A comparison of nondestructive methods. Rangel Ecol. Manag. 2011, 64, 498–505. [Google Scholar] [CrossRef]
- Chen, S.; Wang, S.; Zhou, Y. Estimation of Chinese grassland productivity using remote sensing. Trans. CSAE 2008, 24, 208–212. (In Chinese) [Google Scholar]
- Zhang, T.-T.; Qi, J.-G.; Gao, Y.; Ouyang, Z.-T.; Zeng, S.-L.; Zhao, B. Detecting soil salinity with MODIS time series VI data. Ecol. Indic. 2015, 52, 480–489. [Google Scholar] [CrossRef]
- Jawak, S.D.; Devliyal, P.; Luis, A.J. A comprehensive review on pixel oriented and object oriented methods for information extraction from remotely sensed satellite images with a special emphasis on cryospheric applications. Adv. Remote Sens. 2015, 4, 177. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Hellesen, T.; Matikainen, L. An object-based approach for mapping shrub and tree cover on grassland habitats by use of LiDAR and CIR orthoimages. Remote Sens. 2013, 5, 558–583. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.L.; Xiao, P.F.; Song, X.Q.; She, J.F. Boundary-constrained multi-scale segmentation method for remote sensing images. ISPRS J. Photogram. 2013, 78, 15–25. [Google Scholar] [CrossRef]
- Otukei, J.R.; Blaschke, T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S27–S31. [Google Scholar] [CrossRef]
- Elnaggar, A.; Noller, J. Application of remote-sensing data and decision-tree analysis to mapping salt-affected soils over large areas. Remote Sens. 2010, 2, 151–165. [Google Scholar] [CrossRef] [Green Version]
- de Colstoun, E.C.B.; Walthall, C.L. Improving global scale land cover classifications with multi-directional POLDER data and a decision tree classifier. Remote Sens. Environ. 2006, 100, 474–485. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogram. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Ließ, M.; Glaser, B.; Huwe, B. Uncertainty in the spatial prediction of soil texture: Comparison of regression tree and Random Forest models. Geoderma 2012, 170, 70–79. [Google Scholar] [CrossRef]
- Guo, L.; Chehata, N.; Mallet, C.; Boukir, S. Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. ISPRS J. Photogram. 2011, 66, 56–66. [Google Scholar] [CrossRef]
- Huang, H.; Liu, C.; Wang, X.; Zhou, X.; Gong, P. Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China. Remote Sens. Environ. 2019, 221, 225–234. [Google Scholar] [CrossRef]
- Martens, H.; Martens, M. Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Qual. Prefer. 2000, 11, 5–16. [Google Scholar] [CrossRef]
- Ringnér, M. What is principal component analysis? Nat. Biotechnol. 2008, 26, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Vincenzi, S.; Zucchetta, M.; Franzoi, P.; Pellizzato, M.; Pranovi, F.; De Leo, G.A.; Torricelli, P. Application of a Random Forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy. Ecol. Model. 2011, 222, 1471–1478. [Google Scholar] [CrossRef]
- Li, S.; Verburg, P.H.; Lv, S.; Wu, J.; Li, X. Spatial analysis of the driving factors of grassland degradation under conditions of climate change and intensive use in Inner Mongolia, China. Reg. Environ. Chang. 2012, 12, 461–474. [Google Scholar] [CrossRef]
- Gao, Q.; Li, Y.; Lin, E.; Jiangcun, W.; Wan, Y.; Xiong, W.; Wang, B.; Li, W. Temporal and spatial distribution of grassland degradation in Northern Tibet. Acta Geogr. Sin. 2005, 60, 965–973. (In Chinese) [Google Scholar]
- Jin, X.; Yang, G.; Xu, X.; Yang, H.; Feng, H.; Li, Z.; Shen, J.; Lan, Y.; Zhao, C. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sens. 2015, 7, 13251–13272. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Liu, Y.; Tao, J.; Weng, Y. Soil Salinity Retrieval from Advanced Multi-Spectral Sensor with Partial Least Square Regression. Remote Sens. 2015, 7, 488–511. [Google Scholar] [CrossRef] [Green Version]
- Pang, G.; Wang, T.; Liao, J.; Li, S. Quantitative Model Based on Field-Derived Spectral Characteristics to Estimate Soil Salinity in Minqin County, China. Soil Sci. Soc. Am. J. 2014, 78, 546–554. [Google Scholar] [CrossRef]
- Yan, B.; Fang, N.F.; Zhang, P.C.; Shi, Z.H. Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. J. Hydrol. 2013, 484, 26–37. [Google Scholar] [CrossRef]
- Janik, L.J.; Forrester, S.T.; Rawson, A. The prediction of soil chemical and physical properties from mid-infrared spectroscopy and combined partial least-squares regression and neural networks (PLS-NN) analysis. Chemom. Intell. Lab. Syst. 2009, 97, 179–188. [Google Scholar] [CrossRef]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhao, K.; Ren, J.H.; Ding, Y.L.; Wu, L.L. Analysis of the Dielectric constant of saline-alkali soils and the effect on radar backscattering coefficient: A case study of soda alkaline saline soils in Western Jilin Province using RADARSAT-2 data. Sci. World J. 2014, 2014, 563015. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, T.; Kawamura, K. Grassland degradation in China: Methods of monitoring, management and restoration. Grassl. Sci. 2007, 53, 1–17. [Google Scholar] [CrossRef]
Spectral Index | Expression | Full Name |
---|---|---|
NDVI | (NIR − Red)/(NIR + Red) | Normalized Difference Vegetation Index |
DVI | NIR − Red | Different Vegetation Index |
EVI | NIR/Red | Enhanced Vegetation Index |
SAVI | (NIR − Red)/(NIR + Red + 0.5) 1.5 | Soil Adjusted Vegetation Index |
SI | Salinity Index | |
SI2 | Salinity Index2 | |
SI3 | Salinity Index3 | |
SI4 | SWIR1/NIR | Salinity Index4 |
Type of Model | ANPP | R2 | RSME (gC/m2) |
Linear | ANPP = 234.561NDVI + 34.067 | 0.540 ** | 20.696 |
Polynomial | ANPP = 133.798NDVI2 + 153.18NDVI + 43.186 | 0.545 ** | 20.592 |
Exponential | ANPP = 43.896e2.494NDVI | 0.529 ** | 21.065 |
LTU | ANPP = 256.824 + 351.608NDVI − 287.695SWIR | 0.571 ** | 20.048 |
Type of Model | EC | R2 | RSME (mS/cm) |
Linear | EC = 4.2862Green − 0.5525 | 0.682 ** | 0.471 |
Polynomial | EC = 7.1997Green2 − 0.7424Green + 0.0748 | 0.735 ** | 0.437 |
Power exponent | EC = 3.982Green1.867 | 0.738 ** | 0.429 |
LTU | EC = 6.296Green − 1.982SWIR − 0.186 | 0.703 * | 0.452 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Wang, L.; Wang, Z.; Ren, C.; Zhang, B. Using Landsat OLI and Random Forest to Assess Grassland Degradation with Aboveground Net Primary Production and Electrical Conductivity Data. ISPRS Int. J. Geo-Inf. 2019, 8, 511. https://doi.org/10.3390/ijgi8110511
Yu H, Wang L, Wang Z, Ren C, Zhang B. Using Landsat OLI and Random Forest to Assess Grassland Degradation with Aboveground Net Primary Production and Electrical Conductivity Data. ISPRS International Journal of Geo-Information. 2019; 8(11):511. https://doi.org/10.3390/ijgi8110511
Chicago/Turabian StyleYu, Hao, Lei Wang, Zongming Wang, Chunying Ren, and Bai Zhang. 2019. "Using Landsat OLI and Random Forest to Assess Grassland Degradation with Aboveground Net Primary Production and Electrical Conductivity Data" ISPRS International Journal of Geo-Information 8, no. 11: 511. https://doi.org/10.3390/ijgi8110511
APA StyleYu, H., Wang, L., Wang, Z., Ren, C., & Zhang, B. (2019). Using Landsat OLI and Random Forest to Assess Grassland Degradation with Aboveground Net Primary Production and Electrical Conductivity Data. ISPRS International Journal of Geo-Information, 8(11), 511. https://doi.org/10.3390/ijgi8110511