Human-Centric Data Science for Urban Studies
Abstract
:1. Introduction
2. Creating Value from Massive Urban Data Sets
- Geo-social network data. With the rapid rise of social networks, we have witnessed a paradigm shift in human communication, but even more so in the availability of real-time data that reflect urban processes. These data stem from geo-social networks like Twitter, Foursquare, Facebook, Flickr, YouTube, and many others [6]. Apart from the data’s inherent spatial and temporal nature (geolocation plus timestamp), there is an increasing focus on analyzing the semantic content of social media posts: Semantic richness allows for the extraction of relevant information, such as sentiments, opinions, or observations [7].
- Wearable sensor data. Recently, research efforts capitalizing on new developments in physiological sensing have been flourishing, particularly in deriving emotions from physiological parameters. These efforts are driven by the increasing availability of a variety of affordable wearable sensors that measure a broad range of physiological parameters, such as heart rate, galvanic skin response, or skin temperature [8]. These new low-cost wearables are increasingly used in scientific studies in a variety of areas like health research [9], well-being assessment, extraction of emotion information [10], spatial emotion analysis, and stress detection [11]. However, as a new research field, caution has to be exercised as some research efforts in this direction have used wearable physiological sensors without prior investigation of the sensor’s exact quality parameters; i.e., how accurately a sensor actually measures a given parameter or how reliable a sensor is at producing continuously high-quality measurement results.
- Mobile phone data. Additionally to traditional call details records, modern smartphones record high-frequency x-detail records that include internet/app activities and continuous GPS positions [12]. The recent wide spread of mobile phone technology, therefore, allows tracking both the detailed movements and socio-economic activities of the majority of a city’s inhabitants and its visitors [13]. This extensive insight into the lives of individuals implies unprecedented opportunities for computational social science [14,15], while at the same time posing new fundamental challenges to privacy [16].
- Transport and mobile sensor data. The digitalization of private and public transport services now allows tracking of citizens in the public transportation system, such as through the London Oyster card [17], and analyzing/visualizing entire taxi systems and transportation fleets [18,19]. Further, detailed records are being generated by novel mobility sharing systems, from car and bicycle sharing to e-stroller and ride sharing. Custom sensors, installed on vehicles, can provide the potential to sense ecological urban variables and the sentiments of city dwellers in unprecedented detail [20]. All these developments have led to an explosion in data-driven research on human mobility [21].
- Volunteered geographic information. OpenStreetMap (OSM) has become a vital source for urban analysis. Its geospatial accuracy, completeness, and semantic comprehensiveness [22] allow for supporting decisions in a number of academic and real-world use cases through high-quality and up-to-date information about urban features [23,24].
3. Challenges in Human-Generated Urban Data Analysis
4. Approaches to Analyzing Human-Generated Urban Data
5. Urban Planning for Humans, Not for Technological or Entrepreneurial Self-Interest
6. The Contributions of This Special Issue
Author Contributions
Funding
Conflicts of Interest
References
- Cairncross, F. The Death of Distance: How the Communications Revolution Will Change Our Lives; Harvard Business School: Boston, MA, USA, 1997. [Google Scholar]
- Schläpfer, M.; Bettencourt, L.M.; Grauwin, S.; Raschke, M.; Claxton, R.; Smoreda, Z.; West, G.B.; Ratti, C. The scaling of human interactions with city size. J. R. Soc. Interface 2014, 11, 20130789. [Google Scholar] [CrossRef] [PubMed]
- Miller, H.J.; Goodchild, M.F. Data-driven geography. GeoJournal 2015, 80, 449–461. [Google Scholar] [CrossRef]
- Marrone, M.; Hammerle, M. Smart cities: A review and analysis of stakeholders’ literature. Bus. Inf. Syst. Eng. 2018, 60, 197–213. [Google Scholar] [CrossRef]
- Hollands, R.G. Will the real smart city please stand up? Intelligent, progressive or entrepreneurial? City 2008, 12, 303–320. [Google Scholar] [CrossRef]
- Salas-Olmedo, M.H.; Moya-Gómez, B.; García-Palomares, J.C.; Gutiérrez, J. Tourists’ digital footprint in cities: Comparing Big Data sources. Tour. Manag. 2018, 66, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Steiger, E.; Resch, B.; Zipf, A. Exploration of spatiotemporal and semantic clusters of Twitter data using unsupervised neural networks. Int. J. Geogr. Inf. Sci. 2016, 30, 1694–1716. [Google Scholar] [CrossRef]
- Zeile, P.; Resch, B.; Exner, J.P.; Sagl, G. Urban emotions: benefits and risks in using human sensory assessment for the extraction of contextual emotion information in urban planning. In Planning Support Systems and Smart Cities; Springer: Berlin, Germany, 2015; pp. 209–225. [Google Scholar]
- Birenboim, A.; Dijst, M.; Scheepers, F.E.; Poelman, M.P.; Helbich, M. Wearables and location tracking technologies for mental-state sensing in outdoor environments. Prof. Geogr. 2019, 71, 449–461. [Google Scholar] [CrossRef]
- Basu, S.; Jana, N.; Bag, A.; Mahadevappa, M.; Mukherjee, J.; Kumar, S.; Guha, R. Emotion recognition based on physiological signals using valence-arousal model. In Proceedings of the 2015 Third International Conference on Image Information Processing (ICIIP), Waknaghat, India, 21–24 December 2015; pp. 50–55. [Google Scholar]
- Kyriakou, K.; Resch, B.; Sagl, G.; Petutschnig, A.; Werner, C.; Niederseer, D.; Liedlgruber, M.; Wilhelm, F.H.; Osborne, T.; Pykett, J. Detecting moments of stress from measurements of wearable physiological sensors. Sensors 2019, 19, 3805. [Google Scholar] [CrossRef] [Green Version]
- Ferres, L. Indoor Towers, DPIs, and More People in Parks at Night: New Trends in Mobile Phone Location Research. In Proceedings of the Companion 2019 World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; ACM: New York, NY, USA, 2019; p. 895. [Google Scholar]
- Calabrese, F.; Ferrari, L.; Blondel, V.D. Urban sensing using mobile phone network data: A survey of research. ACM Comput. Surv. (CSUR) 2015, 47, 25. [Google Scholar] [CrossRef]
- Alessandretti, L.; Sapiezynski, P.; Lehmann, S.; Baronchelli, A. Multi-scale spatio-temporal analysis of human mobility. PLoS ONE 2017, 12, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Alessandretti, L.; Lehmann, S.; Baronchelli, A. Understanding the interplay between social and spatial behaviour. EPJ Data Sci. 2018, 7, 36. [Google Scholar] [CrossRef]
- De Montjoye, Y.A.; Hidalgo, C.A.; Verleysen, M.; Blondel, V.D. Unique in the crowd: The privacy bounds of human mobility. Sci. Rep. 2013, 3, 1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, C.; Kang, S.M.; Batty, M.; Barthélemy, M. Structure of urban movements: polycentric activity and entangled hierarchical flows. PLoS ONE 2011, 6, e15923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szell, M.; Groß, B. Decoding the City; Chapter Hubcab- Exploring the Benefits of Shared Taxi Services; De Gruyter: Berlin, Germany, 2014; pp. 28–39. [Google Scholar] [CrossRef]
- Santi, P.; Resta, G.; Szell, M.; Sobolevsky, S.; Strogatz, S.H.; Ratti, C. Quantifying the benefits of vehicle pooling with shareability networks. Proc. Natl. Acad. Sci. USA 2014, 111, 13290–13294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Keeffe, K.P.; Anjomshoaa, A.; Strogatz, S.H.; Santi, P.; Ratti, C. Quantifying the sensing power of vehicle fleets. Proc. Natl. Acad. Sci. USA 2019, 116, 12752–12757. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, H.; Barthelemy, M.; Ghoshal, G.; James, C.R.; Lenormand, M.; Louail, T.; Menezes, R.; Ramasco, J.J.; Simini, F.; Tomasini, M. Human mobility: Models and applications. Phys. Rep. 2018, 734, 1–74. [Google Scholar] [CrossRef] [Green Version]
- Haklay, M. How good is volunteered geographical information? A comparative study of OpenStreetMap and Ordnance Survey datasets. Environ. Plan. B Plan. Des. 2010, 37, 682–703. [Google Scholar] [CrossRef] [Green Version]
- Szell, M. Crowdsourced quantification and visualization of urban mobility space inequality. Urban Plan. 2018, 3, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Crooks, A.; Pfoser, D.; Jenkins, A.; Croitoru, A.; Stefanidis, A.; Smith, D.; Karagiorgou, S.; Efentakis, A.; Lamprianidis, G. Crowdsourcing urban form and function. Int. J. Geogr. Inf. Sci. 2015, 29, 720–741. [Google Scholar] [CrossRef]
- Sobolevsky, S.; Sitko, I.; Des Combes, R.T.; Hawelka, B.; Arias, J.M.; Ratti, C. Cities through the prism of people’s spending behavior. PLoS ONE 2016, 11, e0146291. [Google Scholar] [CrossRef]
- MIT Media Lab. Atlas of Inequality. Available online: https://inequality.media.mit.edu/ (accessed on 31 October 2019).
- Hartshorn, T.A. Interpreting the City: An Urban Geography; John Wiley & Sons Incorporated: Hoboken, NJ, USA, 1992. [Google Scholar]
- Anstead, N.; O’Loughlin, B. Social media analysis and public opinion: The 2010 UK general election. J. Comput.-Mediat. Commun. 2014, 20, 204–220. [Google Scholar] [CrossRef] [Green Version]
- Malik, M.M.; Lamba, H.; Nakos, C.; Pfeffer, J. Population bias in geotagged tweets. In Proceedings of the Ninth International AAAI Conference on Web and Social Media, Oxford, UK, 26–29 May 2015. [Google Scholar]
- Steiger, E.; Ellersiek, T.; Resch, B.; Zipf, A. Uncovering latent mobility patterns from twitter during mass events. GI_Forum 2015, 1, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Eisenstein, J. What to do about bad language on the internet. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Atlanta, GA, USA, 9–14 June 2013; pp. 359–369. [Google Scholar]
- Batty, M. The New Science of Cities; MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Barthelemy, M. The Structure and Dynamics of Cities; Cambridge University Press: Cambridge, MA, USA, 2016. [Google Scholar]
- West, G.B. Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies; Penguin: London, UK, 2017. [Google Scholar]
- Steiger, E.; Resch, B.; de Albuquerque, J.P.; Zipf, A. Mining and correlating traffic events from human sensor observations with official transport data using self-organizing-maps. Transp. Res. Part C Emerg. Technol. 2016, 73, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Kang, W.; Oshan, T.; Wolf, L.J.; Boeing, G.; Frias-Martinez, V.; Gao, S.; Poorthuis, A.; Xu, W. A roundtable discussion: Defining urban data science. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1756–1768. [Google Scholar]
- Dear, M. Understanding and overcoming the NIMBY syndrome. J. Am. Plan. Assoc. 1992, 58, 288–300. [Google Scholar] [CrossRef]
- Resch, B.; Sagl, G.; Törnros, T.; Bachmaier, A.; Eggers, J.B.; Herkel, S.; Narmsara, S.; Gündra, H. GIS-Based Planning and Modeling for Renewable Energy: Challenges and Future Research Avenues. ISPRS Int. J. Geo-Inf. 2014, 2, 662–692. [Google Scholar] [CrossRef]
- Urry, J. Societies Beyond Oil: Oil Dregs and Social Futures; Zed Books Ltd.: New York, NY, USA, 2013. [Google Scholar]
- Gössling, S. Urban transport justice. J. Transp. Geogr. 2016, 54, 1–9. [Google Scholar] [CrossRef]
- Speck, J. Walkable City: How Downtown Can Save America, One Step at A Time. Available online: https://www.washingtonpost.com/opinions/walkable-city-how-downtown-can-save-america-one-step-at-a-time-by-jeff-speck/2013/02/22/785c064a-43a4-11e2-8e70-e1993528222d_story.html (accessed on 31 October 2019).
- Nieuwenhuijsen, M.J.; Khreis, H. Car free cities: Pathway to healthy urban living. Environ. Int. 2016, 94, 251–262. [Google Scholar] [CrossRef]
- Gössling, S.; Choi, A.; Dekker, K.; Metzler, D. The social cost of automobility, cycling and walking in the European Union. Ecol. Econ. 2019, 158, 65–74. [Google Scholar] [CrossRef]
- Walker, J. The Dangers of Elite Projection. Available online: https://humantransit.org/2017/07/the-dangers-of-elite-projection.html (accessed on 31 October 2019).
- Pflieger, G.; Kaufmann, V.; Pattaroni, L.; Jemelin, C. How does urban public transport change cities? Correlations between past and present transport and urban planning policies. Urban Stud. 2009, 46, 1421–1437. [Google Scholar] [CrossRef]
- Paolotti, D.; Tizzoni, M. DSAA 2018 Special Session: Data Science for Social Good. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), Turin, Italy, 1–3 October 2018; pp. 470–471. [Google Scholar]
- Lepri, B.; Staiano, J.; Sangokoya, D.; Letouzé, E.; Oliver, N. The tyranny of data? the bright and dark sides of data-driven decision-making for social good. In Transparent Data Mining for Big and Small Data; Springer: Berlin, Germany, 2017; pp. 3–24. [Google Scholar]
- Zuboff, S. The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power; Profile Books: London, UK, 2019. [Google Scholar]
- Werner, C.; Resch, B.; Loidl, M. Evaluating Urban Bicycle Infrastructures through Intersubjectivity of Stress Sensations Derived from Physiological Measurements. ISPRS Int. J. Geo-Inf. 2019, 8, 265. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, R.; Frøyen, Y.; Snizek, B. Bicycle Level of Service for Route Choice—A GIS Evaluation of Four Existing Indicators with Empirical Data. ISPRS Int. J. Geo-Inf. 2019, 8, 214. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, W.; Zhang, F.; Liu, R.; Du, Z. Identifying Urban Functional Zones Using Public Bicycle Rental Records and Point-of-Interest Data. ISPRS Int. J. Geo-Inf. 2018, 7, 459. [Google Scholar] [CrossRef] [Green Version]
- Pajarito, D.; Gould, M. Mapping Frictions Inhibiting Bicycle Commuting. ISPRS Int. J. Geo-Inf. 2018, 7, 396. [Google Scholar] [CrossRef] [Green Version]
- Kovacs-Györi, A.; Ristea, A.; Kolcsar, R.; Resch, B.; Crivellari, A.; Blaschke, T. Beyond Spatial Proximity—Classifying Parks and Their Visitors in London Based on Spatiotemporal and Sentiment Analysis of Twitter Data. ISPRS Int. J. Geo-Inf. 2018, 7, 378. [Google Scholar] [CrossRef] [Green Version]
- Nouman, A.S.; Chokhachian, A.; Santucci, D.; Auer, T. Prototyping of Environmental Kit for Georeferenced Transient Outdoor Comfort Assessment. ISPRS Int. J. Geo-Inf. 2019, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Bielik, M.; Schneider, S.; Kuliga, S.; Griego, D.; Ojha, V.; König, R.; Schmitt, G.; Donath, D. Examining Trade-Offs between Social, Psychological, and Energy Potential of Urban Form. ISPRS Int. J. Geo-Inf. 2019, 8, 52. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Liu, L.; Song, G.; Ruiter, S.; Zhou, S. Journey-to-Crime Distances of Residential Burglars in China Disentangled: Origin and Destination Effects. ISPRS Int. J. Geo-Inf. 2018, 7, 325. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.L.; Yen, M.F.; Yu, L.C. Grid-Based Crime Prediction Using Geographical Features. ISPRS Int. J. Geo-Inf. 2018, 7, 298. [Google Scholar] [CrossRef] [Green Version]
- Cottineau, C.; Vanhoof, M. Mobile Phone Indicators and Their Relation to the Socioeconomic Organisation of Cities. ISPRS Int. J. Geo-Inf. 2019, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Osaba, E.; Pierdicca, R.; Malinverni, E.S.; Khromova, A.; Álvarez, F.J.; Bahillo, A. A Smartphone-Based System for Outdoor Data Gathering Using a Wireless Beacon Network and GPS Data: From Cyber Spaces to Senseable Spaces. ISPRS Int. J. Geo-Inf. 2018, 7, 190. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Cui, Z.; Zhang, X. Identifying Modes of Driving Railway Trains from GPS Trajectory Data: An Ensemble Classifier-Based Approach. ISPRS Int. J. Geo-Inf. 2018, 7, 308. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Tu, W.; Zhuo, L. Reliable Rescue Routing Optimization for Urban Emergency Logistics under Travel Time Uncertainty. ISPRS Int. J. Geo-Inf. 2018, 7, 77. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Song, W.; Li, C.; Lu, J. The Spatial Equity of Nursing Homes in Changchun: A Multi-Trip Modes Analysis. ISPRS Int. J. Geo-Inf. 2019, 8, 223. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Chen, H.; Li, J.; Wu, Y.; Wu, J.; Chen, L. Large-Scale Station-Level Crowd Flow Forecast with ST-Unet. ISPRS Int. J. Geo-Inf. 2019, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Maeda, T.N.; Mori, J.; Ochi, M.; Sakimoto, T.; Sakata, I. Measurement of Opportunity Cost of Travel Time for Predicting Future Residential Mobility Based on the Smart Card Data of Public Transportation. ISPRS Int. J. Geo-Inf. 2018, 7, 416. [Google Scholar] [CrossRef] [Green Version]
- Hacar, M.; Kılıç, B.; Şahbaz, K. Analyzing OpenStreetMap Road Data and Characterizing the Behavior of Contributors in Ankara, Turkey. ISPRS Int. J. Geo-Inf. 2018, 7, 400. [Google Scholar] [CrossRef] [Green Version]
- Agryzkov, T.; Pedroche, F.; Tortosa, L.; Vicent, J.F. Combining the Two-Layers PageRank Approach with the APA Centrality in Networks with Data. ISPRS Int. J. Geo-Inf. 2018, 7, 480. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yi, D.; Qiao, B.; Zhang, J. Spatio-Temporal Change Characteristics of Spatial-Interaction Networks: Case Study within the Sixth Ring Road of Beijing, China. ISPRS Int. J. Geo-Inf. 2019, 8, 273. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.C.; Chang, Y.J.; Wang, H.C. An Application of the Spatial Autocorrelation Method on the Change of Real Estate Prices in Taitung City. ISPRS Int. J. Geo-Inf. 2019, 8, 249. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Martín, J.M.; Rengifo-Gallego, J.I.; Blas-Morato, R. Hot Spot Analysis versus Cluster and Outlier Analysis: An Enquiry into the Grouping of Rural Accommodation in Extremadura (Spain). ISPRS Int. J. Geo-Inf. 2019, 8, 176. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Pan, J.; Xie, L.; Zhou, T.; Bai, H.; Zhu, Y. Spatial–Temporal Evolution and Regional Differentiation Features of Urbanization in China from 2003 to 2013. ISPRS Int. J. Geo-Inf. 2019, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Lei, C.; Zhang, A.; Qi, Q.; Su, H.; Wang, J. Spatial-Temporal Analysis of Human Dynamics on Urban Land Use Patterns Using Social Media Data by Gender. ISPRS Int. J. Geo-Inf. 2018, 7, 358. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ma, G.; Jiang, L.; Zhang, X.; Liu, Y.; Wang, Y.; Zhao, C. Analysis of Spatial Characteristics of Digital Signage in Beijing with Multi-Source Data. ISPRS Int. J. Geo-Inf. 2019, 8, 207. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Resch, B.; Szell, M. Human-Centric Data Science for Urban Studies. ISPRS Int. J. Geo-Inf. 2019, 8, 584. https://doi.org/10.3390/ijgi8120584
Resch B, Szell M. Human-Centric Data Science for Urban Studies. ISPRS International Journal of Geo-Information. 2019; 8(12):584. https://doi.org/10.3390/ijgi8120584
Chicago/Turabian StyleResch, Bernd, and Michael Szell. 2019. "Human-Centric Data Science for Urban Studies" ISPRS International Journal of Geo-Information 8, no. 12: 584. https://doi.org/10.3390/ijgi8120584
APA StyleResch, B., & Szell, M. (2019). Human-Centric Data Science for Urban Studies. ISPRS International Journal of Geo-Information, 8(12), 584. https://doi.org/10.3390/ijgi8120584