Shallow Landslide Susceptibility Mapping in Sochi Ski-Jump Area Using GIS and Numerical Modelling
Abstract
:1. Introduction
2. Study Area
2.1. General Geographical and Geological Background
2.2. Geotectonic and Seismic Conditions of the Region
3. Data and Methods
3.1. Topographic Data and Slope Map
3.2. Slope Stability Numerical Modelling
3.2.1. Slope Models
3.2.2. Physical–Mechanical Parameters of Mudstone
3.2.3. Spencer Method of Slope Stability Analysis
3.2.4. Pseudostatic Analysis
3.2.5. Newmark Deformation Method
4. Results
4.1. Relationships of Safety Factor to Slope Angle
4.2. Static and Seismic Safety Factor Mapping
4.3. Newmark Deformation Mapping
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nadim, F.; Kjekstad, O.; Peduzzi, P.; Herold, C.; Jaedicke, C. Global landslide and avalanche hotspots. Landslides 2006, 3, 159–173. [Google Scholar] [CrossRef]
- Fedorovsky, V.G.; Kurillo, S.V.; Kryuchkov, S.A.; Bobyr, G.A.; Dzhantimirov, K.A.; Iliyn, S.V.I.; Iliyn, S.; Kharlamov, P.V.; Rytov, S.A.; Skorokhodov, A.G.; et al. Geotechnical Aspects of Design and Construction of the Mountain Cluster Olympic Facilities in Sochi. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 2–6 September 2013; pp. 3099–3102. [Google Scholar]
- Ponomarev, A.A.; Zerkal, O.V.; Samarin, E.N. Protection of the transport infrastructure from influence of landslides by suspension grouting. Procedia Eng. 2017, 189, 880–885. [Google Scholar] [CrossRef]
- Huang, S.; Wang, J.; Qiu, Z.; Kang, K. Effects of Cyclic Wetting-Drying Conditions on Elastic Modulus and Compressive Strength of Sandstone and Mudstone. Processes 2018, 6, 234. [Google Scholar] [CrossRef]
- Corominas, J.; Martínez-Bofill, J.; Soler, A. A textural classification of argillaceous rocks and their durability. Landslides 2014, 12, 669–687. [Google Scholar] [CrossRef]
- Zerkal, O.V.; Kalinin, E.V.; Panasyan, L.L. The Formation and Distribution of Stress Concentration Zones in Heterogeneous Rock Masses with Slopes. In Proceedings of the XII International IAEG Congress on Engineering Geology for Society and Territory; Springer: New York, NY, USA, 2015; Volume 2, pp. 1251–1254. [Google Scholar] [CrossRef]
- van Westen, C.J.; van Asch, T.W.J.; Soeters, R. Landslide hazard and risk zonation—Why is it still so difficult? Bull. Eng. Geol. Environ. 2005, 65, 167–184. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Ardizzone, F.; Cardinali, M.; Galli, M. Estimating the quality of landslide susceptibility models. Geomorphology 2006, 81, 166–184. [Google Scholar] [CrossRef]
- Dou, J.; Yamagishi, H.; Pourghasemi, H.R.; Yunus, A.P.; Song, X.; Xu, Y.; Zhu, Z. An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Nat. Hazards 2015, 78, 1749–1776. [Google Scholar] [CrossRef]
- Lin, L.; Lin, Q.G.; Wang, Y. Landslide susceptibility mapping on a global scale using the method of logistic regression. Nat. Hazard Earth Syst. 2017, 17, 1411–1424. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Tien Bui, D.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.W.; Khosravi, K.; Yang, Y.; Pham, B.T. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci. Total Environ. 2019, 662, 332–346. [Google Scholar] [CrossRef]
- Juliev, M.; Mergili, M.; Mondal, I.; Nurtaev, B.; Pulatov, A.; Hubl, J. Comparative analysis of statistical methods for landslide susceptibility mapping in the Bostanlik District, Uzbekistan. Sci. Total Environ. 2019, 653, 801–814. [Google Scholar] [CrossRef]
- Qiu, C.; Esaki, T.; Xie, M.; Mitani, Y.; Wang, C. Spatio-temporal estimation of shallow landslide hazard triggered by rainfall using a three-dimensional model. Environ. Geol. 2006, 52, 1569–1579. [Google Scholar] [CrossRef]
- Zakharov, V.S.; Simonov, D.A.; Koptev, A.V. Computational modelling of seismic landslide displacement. GEOprofile 2009, 1, 1–24. (In Russian) [Google Scholar]
- Kuzin, A.A.; Grishchenkova, E.N.; Mustafin, M.G. Prediction of Natural and Technogenic Negative Processes Based on the Analysis of Relief and Geological Structure. Procedia Eng. 2017, 189, 744–751. [Google Scholar] [CrossRef]
- Jibson, R.W.; Harp, E.L.; Michael, J.A. A method for producing digital probabilistic seismic landslide hazard maps. Eng. Geol. 2000, 58, 271–289. [Google Scholar] [CrossRef]
- Ingles, J.; Darrozes, J.; Soula, J.C. Effects of the vertical component of ground shaking on earthquake-induced landslide displacements using generalized Newmark analysis. Eng. Geol. 2006, 86, 134–147. [Google Scholar] [CrossRef]
- Chen, C.-W.; Chen, H.; Wei, L.-W.; Lin, G.-W.; Iida, T.; Yamada, R. Evaluating the susceptibility of landslide landforms in Japan using slope stability analysis: A case study of the 2016 Kumamoto earthquake. Landslides 2017, 14, 1793–1801. [Google Scholar] [CrossRef]
- Krahn, J. Stability Modeling with SLOPE/W, An Engineering Methodology, 3rd ed.; GEO-SLOPE International Ltd.: Calgary, AB, Canada, 2007; p. 355. [Google Scholar]
- Dawson, E.M.; Roth, W.H.; Drescher, A. Slope stability analysis by strength reduction. Geotechnique 1999, 49, 835–840. [Google Scholar] [CrossRef]
- Griffiths, D.V.; Lane, P.A. Slope stability analysis by finite elements. Geotechnique 1999, 49, 387–403. [Google Scholar] [CrossRef]
- Itasca Consulting Group Inc. FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) User’s Manua (Version 5.0); Itasca Consulting Group Inc.: Minneapolis, MN, USA, 2012. [Google Scholar]
- Tang, C.-L.; Hu, J.-C.; Lin, M.-L.; Angelier, J.; Lu, C.-Y.; Chan, Y.-C.; Chu, H.-T. The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation. Eng. Geol. 2009, 106, 1–19. [Google Scholar] [CrossRef]
- Li, X.; He, S.; Luo, Y.; Wu, Y. Simulation of the sliding process of Donghekou landslide triggered by the Wenchuan earthquake using a distinct element method. Environ. Earth Sci. 2011, 65, 1049–1054. [Google Scholar] [CrossRef]
- Bogomolov, A.N.; Matsiy, S.I.; Babakhanov, B.S.; Bezuglova, E.V.; Leyer, D.V.; Kuznetsova, S.V. Landslide stabilization on the section of the railroad construction in Sochi. Vestnik Volgograd. Gosudarstvennogo Arhitekturno-Stroitelnogo Univ. Stroitel. Arhitektura 2012, 29, 15–25. [Google Scholar]
- Fomenko, I.K.; Zerkal, O.V. The Application of Anisotropy of Soil Properties in the Probabilistic Analysis of Landslides Activity. Procedia Eng. 2017, 189, 886–892. [Google Scholar] [CrossRef]
- Kang, K.; Zerkal, O.V.; Huang, S.; Ponomarev, A.A. Roadway Slope Stability Assessment in Mudstone Layers of Sochi (Russia). In Geomechanics and Geodynamics of Rock Masses: Proceedings of EUROCK 2018, ISRM European Regional Symposium, Saint Petersburg, Russia; CRC Press: London, UK, 2018; Volume 2, pp. 1217–1222. [Google Scholar]
- Spencer, E. A Method of Analysis of Embankments assuming Parallel Interslice Forces. Geotechnique 1967, 17, 11–26. [Google Scholar] [CrossRef]
- Ulomov, V.I.; Shumilina, L.S. The Set of Maps of the General Seismic Risk Regionalization of the Territory of the Russian Federation, OSR-97. Scale 1:8000000, Explanatory Note and List of Cities and Populated Areas, Located in the Earthquake-Hazard Regions; Institute of Physics of the Earth RAS: Moscow, Russia, 2000; 57p. (In Russian) [Google Scholar]
- Ovsyuchenko, A.N.; Khil’ko, A.V.; Shvarev, S.V.; Kostenko, K.A.; Marakhanov, A.V.; Rogozhin, E.A.; Novikov, S.S.; Lar’kov, A.S. Complex geological-geophysical study of active faults in the Sochi-Krasnaya Polyana region. Izvestiya Phys. Solid Earth 2013, 49, 859–881. [Google Scholar] [CrossRef]
- Newmark, N.M. Effects of Earthquakes on Dams and Embankments. Geotechnique 1965, 15, 139–160. [Google Scholar] [CrossRef]
- Wang, K.-L.; Lin, M.-L. Development of shallow seismic landslide potential map based on Newmark’s displacement: The case study of Chi-Chi earthquake, Taiwan. Environ. Earth Sci. 2009, 60, 775–785. [Google Scholar] [CrossRef]
- Hsieh, S.-Y.; Lee, C.-T. Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration. Eng. Geol. 2011, 122, 34–42. [Google Scholar] [CrossRef]
- Wang, Y.; Song, C.; Lin, Q.; Li, J. Occurrence probability assessment of earthquake-triggered landslides with Newmark displacement values and logistic regression: The Wenchuan earthquake, China. Geomorphology 2016, 258, 108–119. [Google Scholar] [CrossRef]
- Rogozhin, E.A.; Ovsyuchenko, A.N.; Lutikov, A.I.; Sobisevich, A.L.; Sobisevich, L.E.; Gorbatikov, A.V. Endogenous Hazards of the Greater Caucasus; IFZ RAN: Moscow, Russia, 2014; 256p. (In Russian) [Google Scholar]
- Janbu, N. Applications of Composite Slip Surfaces for Stability Analysis. In Proceedings of the European Conference on the Stability of Earth Slopes, Stockholm, Sweden, 20–25 September 1954; Volume 3, pp. 39–43. [Google Scholar]
- Bishop, A.W.; Morgenstern, N. Stability coefficients for earth slopes. Geotechnique 1960, 10, 164–169. [Google Scholar] [CrossRef]
- Comité Européen de Normalisation (CEN). Eurocode 8, Design of Structures for Earthquake Resistance—Part 5: Foundations, Retaining Structures and Geotechnical Aspects; European Standard NF EN 1998-5; CEN: Brussels, Belgium, 2004. [Google Scholar]
- Margottini, C.; Molin, D.; Serva, L. Intensity Versus Ground Motion—A New Approach Using Italian Data. Eng Geol 1992, 33, 45–58. [Google Scholar] [CrossRef]
Magnitude, M | Earthquake Hypocentral Depth, D (km) | MSK-64 Intensity, Im | Peak Ground Horizontal Acceleratio, PGA (g) | Horizontal Seismic Coefficient, Kh | Vertical Seismic Coefficient, Kv |
---|---|---|---|---|---|
7.3 | 15 | 9.4 | 0.44 | 0.22 | 0.07 |
7.3 | 20 | 8.8 | 0.30 | 0.15 | 0.05 |
7.3 | 25 | 8.4 | 0.20 | 0.1 | 0.033 |
7.3 | 30 | 8.0 | 0.16 | 0.08 | 0.026 |
Condition of Numerical Modelling | Magnitude, M | Earthquake Hypocentral Depth, D (km) | Regression Equations between Safety Factor (Fs) and Slope Angle (α) |
---|---|---|---|
Static | None | - | Fs = 0.0011α2 − 0.110α + 3.6686; R2 = 0.984 * |
Seismic | 7.3 | 15 | Fs = 0.0005α2 − 0.051α + 1.9516; R2 = 0.993 |
Seismic | 7.3 | 20 | Fs = 0.0005α2 − 0.054α + 2.1955; R2 = 0.975 |
Seismic | 7.3 | 25 | Fs = 0.0008α2 − 0.075α + 2.6613; R2 = 0.994 |
Seismic | 7.3 | 30 | Fs = 0.0007α2 − 0.073α + 2.7166; R2 = 0.980 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, K.; Ponomarev, A.; Zerkal, O.; Huang, S.; Lin, Q. Shallow Landslide Susceptibility Mapping in Sochi Ski-Jump Area Using GIS and Numerical Modelling. ISPRS Int. J. Geo-Inf. 2019, 8, 148. https://doi.org/10.3390/ijgi8030148
Kang K, Ponomarev A, Zerkal O, Huang S, Lin Q. Shallow Landslide Susceptibility Mapping in Sochi Ski-Jump Area Using GIS and Numerical Modelling. ISPRS International Journal of Geo-Information. 2019; 8(3):148. https://doi.org/10.3390/ijgi8030148
Chicago/Turabian StyleKang, Kai, Andrey Ponomarev, Oleg Zerkal, Shiyuan Huang, and Qigen Lin. 2019. "Shallow Landslide Susceptibility Mapping in Sochi Ski-Jump Area Using GIS and Numerical Modelling" ISPRS International Journal of Geo-Information 8, no. 3: 148. https://doi.org/10.3390/ijgi8030148
APA StyleKang, K., Ponomarev, A., Zerkal, O., Huang, S., & Lin, Q. (2019). Shallow Landslide Susceptibility Mapping in Sochi Ski-Jump Area Using GIS and Numerical Modelling. ISPRS International Journal of Geo-Information, 8(3), 148. https://doi.org/10.3390/ijgi8030148