Spatial Variations in Fertility of South Korea: A Geographically Weighted Regression Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Study Area
2.2. Dependent Variable
2.3. Independent Variables
2.3.1. Number of Childcare Centers
2.3.2. Female Education
2.3.3. Population Density
2.3.4. Net Migration Rates
2.3.5. International Marriage
2.3.6. Local-Population Growth
2.4. Spatial Auticorrelation
2.5. Geographically Weighted Regression Model
3. Results
3.1. Descriptive Statistics
3.2. Global OLS Model
3.3. Spatial Autocorrelation and Geographiccal Weighted Regression Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Statistics-Korea. Provisional Result of 2018 Vital Stataststics; Statistics-Korea: Daejeon, Korea, 2018. [Google Scholar]
- Kim, D.-S. Theoretical explanations of rapid fertility decline in Korea. Jpn. J. Popul. 2005, 3, 2–25. [Google Scholar]
- Anderson, T.; Kohler, H.-P. Education fever and the East Asian fertility puzzle: A case study of low fertility in South Korea. Asian Popul. Stud. 2013, 9, 196–215. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S. Female labour force participation and fertility in South Korea. Asian Popul. Stud. 2014, 10, 252–273. [Google Scholar] [CrossRef]
- Kan, M.-Y.; Hertog, E. Domestic division of labour and fertility preference in China, Japan, South Korea, and Taiwan. Demogr. Res. 2017, 36, 557–588. [Google Scholar] [CrossRef] [Green Version]
- KIHASA. A Study of Fertility Changes in Korea: Based on National Fertility and Family Health Survey (1974–2012); Korea Institute for Health and Social Affairs: Seoul, Korea, 2016. [Google Scholar]
- Kim, J. Female education and its impact on fertility. IZA World Labor 2016, 228, 1–10. [Google Scholar] [CrossRef]
- Seo, M.; Yang, M.; Kang, K. Micro & Macro Approach on Relationship between Child Care Policy and Fertility; Korea Institute for Health and Social Affairs: Seoul, Korea, 2016. [Google Scholar]
- Lee, S.; Choi, H.; Jung, H.E. Evaluation on Effectiveness of Policies in Response to Low Fertility; Korea Institute for Health and Social Affairs: Seoul, Korea, 2010. [Google Scholar]
- Yoo, H.-J.; Hyun, S.-M. The effects of economic resources on marriage-delaying. Korea J. Popul. Stud. 2010, 33, 75–101. [Google Scholar]
- Hirschman, C. Why fertility changes. Annu. Rev. Sociol. 1994, 20, 203–233. [Google Scholar] [CrossRef]
- Lee, S.-S. Low fertility and policy responses in Korea. Jpn. J. Popul. 2009, 7, 57–70. [Google Scholar]
- Jun, B.; Lee, J. The Tradeoff between Fertility and Education: Evidence from the Korean Development Path; FZID Discussion Paper: Stuttgart, Germany, 2014. [Google Scholar]
- Kwon, T.; Kim, T.; Kim, D.-S.; Eun, K.-S. Unerstanding Fertility Transition in Korea; Ilsinsa: Seoul, Korea, 1997. [Google Scholar]
- Lee, S.; Choi, H. Social structural Determinants of Regional Variations in Fertility. Adv. Sci. Technol. Lett. 2016, 131, 60–63. [Google Scholar]
- Kulu, H.; Boyle, P.J. High Fertility in City Suburbs: Compositional or Contextual Effects? Eur. J. Popul. 2009, 25, 157–174. [Google Scholar] [CrossRef]
- Lutz, W.; Testa, M.R.; Penn, D.J. Population density is a key factor in declining human fertility. Popul. Environ. 2006, 28, 69–81. [Google Scholar] [CrossRef]
- Cleland, J.; Wilson, C. Demand theories of the fertility transition: An iconoclastic view. Popul. Stud. 1987, 41, 5–30. [Google Scholar] [CrossRef]
- Bongaarts, J.; Watkins, S.C. Social interactions and contemporary fertility transitions. Popul. Dev. Rev. 1996, 22, 639–683. [Google Scholar] [CrossRef]
- Casterline, J.B.; Population, National Research Council (US) Committee on Population. Diffusion processes and fertility transition: Introduction. In Diffusion Processes and Fertility Transition: Selected Perspectives; National Academies Press (US): Washington, DC, USA, 2001. [Google Scholar]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Kwon, T.-H. The Historical Background to Korea’s Demographic Transition; Harvard University Press: Cambridge, MA, USA, 1981; pp. 1–26. [Google Scholar]
- Yoo, S.H. Educational differentials in cohort fertility during the fertility transition in South Korea. Demogr. Res. 2014, 30, 1463–1494. [Google Scholar] [CrossRef] [Green Version]
- Kye, B. Cohort effects or period effects? Fertility decline in South Korea in the twentieth century. Popul. Res. Policy Rev. 2012, 31, 387–415. [Google Scholar] [CrossRef]
- Kulu, H. Migration and fertility: Competing hypotheses re-examined. Eur. J. Popul./Rev. européenne de Démographie 2005, 21, 51–87. [Google Scholar] [CrossRef]
- Courgeau, D. Family formation and urbanization. Popul. Engl. Sel. 1989, 44, 123–146. [Google Scholar]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Myrdal, A. Nation and Family; the Swedish Experiment in Democratic Family and Population Policy; MIT Press: Cambridge, MA, USA, 1968. [Google Scholar]
- Rindfuss, R.R.; Guzzo, K.B.; Morgan, S.P. The changing institutional context of low fertility. Popul. Res. Policy Rev. 2003, 22, 411–438. [Google Scholar] [CrossRef]
- Blau, D.M.; Robins, P.K. Fertility, Employment, and Child-Care Costs—A Dynamic Analysis. Popul. Index 1986, 52, 393. [Google Scholar]
- Mason, K.O.; Kuhlthau, K. The Perceived Impact of Child-Care Costs on Womens Labor Supply and Fertility. Demography 1992, 29, 523–543. [Google Scholar] [CrossRef] [PubMed]
- Rindfuss, R.R.; Guilkey, D.K.; Morgan, S.P.; Kravdal, O. Child-Care Availability and Fertility in Norway. Popul. Dev. Rev. 2010, 36, 725–748. [Google Scholar] [CrossRef] [PubMed]
- Fukai, T. Childcare availability and fertility: Evidence from municipalities in Japan. J. Jpn. Int. Econ. 2017, 43, 1–18. [Google Scholar] [CrossRef]
- Bongaarts, J. Completing the fertility transition in the developing world: The role of educational differences and fertility preferences. Popul. Stud. 2003, 57, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, J.C. Mass Education as a Determinant of the Timing of Fertility Decline. Popul. Dev. Rev. 1980, 6, 225–255. [Google Scholar] [CrossRef]
- Choe, M.K.; Retherford, R.D. The contribution of education to South Korea’s fertility decline to ‘lowest-low’ level. Asian Popul. Stud. 2009, 5, 267–288. [Google Scholar] [CrossRef]
- Statistics-Korea. Analysis of Birth, Death, Marriage and Divorce by Educational Level: 2000–2015; Statistics Korea: Daejeon, Korea, 2017. [Google Scholar]
- Lee, E. Educational differences in period fertility: The case of South Korea, 1996–2010. Demogr. Res. 2018, 38, 309–320. [Google Scholar] [CrossRef]
- Malthus, T.R. An Essay on the Principle of Population: Or, a View of its Past and Present Effects on Human Happiness, with an Inquiry into Our Prospects Respecting the Future Removal or Mitigation of the Evils Which It Occasions; Reeves and Turner: London, UK, 1878. [Google Scholar]
- Sadler, M.T. The Law of Population: A Treatise, in Six Books; in Disproof of the Superfecundity of Human Beings, and Developing of the Real Principle of Their Increase; Murray, J., Ed.; Nabu Press: Charleston, SC, USA, 2011. [Google Scholar]
- Morita, T.; Yamamoto, K. Economic Geography, Endogenous Fertility, and Agglomeration; Research Institute of Economy, Trade and Industry (RIETI): Tokyo, Japan, 2014. [Google Scholar]
- Fujita, M.; Thisse, J.-F. Economics of Agglomeration: Cities, Industrial Location, and Globalization; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Becker, G.S. An economic analysis of fertility. In Demographic and Economic Change in Developed Countries; Columbia University Press: New York, NY, USA, 1960; pp. 209–240. [Google Scholar]
- Richardson, H.W. Economies and diseconomies of agglomeration. In Urban Agglomeration and Economic Growth; Springer Science & Business Media: Berlin, Germany, 1995; pp. 123–155. [Google Scholar]
- Sato, Y. Economic geography, fertility and migration. J. Urban Econ. 2007, 61, 372–387. [Google Scholar] [CrossRef]
- Kim, G.; Kilkey, M. Marriage Migration Policy in South Korea: Social Investment beyond the Nation State. Int. Migr. 2018, 56, 23–38. [Google Scholar] [CrossRef]
- Lee, H.; Williams, L.; Arguillas, F. Adapting to Marriage Markets: International Marriage Migration from Vietnam to South Korea. J. Comp. Fam. Stud. 2016, 47, 267–288. [Google Scholar] [CrossRef]
- Kim, H.-S.; Kim, K.; Jun, K.-H. Mate Selection Pattern and Fertility Differentials among Married Immigrants in Korea. In Cross-Border Marriage: Global Trends and Diversity; Korea Institute for Health and Social Affairs: Seoul, Korea, 2012; pp. 235–278. [Google Scholar]
- Kim, H.S. Fertility differentials between Korean and international marriage couples in South Korea. Asian Popul. Stud. 2018, 14, 43–60. [Google Scholar] [CrossRef]
- Lee, S.-l.; Yi, J. Fertility and the Proportion of Newlyweds in Different Municipalities. KIHASA Res. Brief 2018, 32, 1–6. [Google Scholar]
- Dormann, C.F.; McPherson, J.M.; Araújo, M.B.; Bivand, R.; Bolliger, J.; Carl, G.; Davies, R.G.; Hirzel, A.; Jetz, W.; Daniel Kissling, W.; et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 2007, 30, 609–628. [Google Scholar] [CrossRef]
- Legendre, P. Spatial autocorrelation: Trouble or new paradigm? Ecology 1993, 74, 1659–1673. [Google Scholar] [CrossRef]
- Tiefelsdorf, M. The saddlepoint approximation of Moran’s I’s and local Moran’s I’s reference distributions and their numerical evaluation. Geogr. Anal. 2002, 34, 187–206. [Google Scholar] [CrossRef]
- Harris, R. Quantitative Geography; Sage Publication Ltd.: London, UK, 2016. [Google Scholar]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Wang, S.; Shi, C.; Fang, C.; Feng, K. Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model. Appl. Energy 2019, 235, 95–105. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Oshan, T.M. Geographically weighted regression and multicollinearity: Dispelling the myth. J. Geogr. Syst. 2016, 18, 303–329. [Google Scholar] [CrossRef]
- Fotheringham, A.S. Trends in quantitative methods I: Stressing the local. Prog. Hum. Geogr. 1997, 21, 88–96. [Google Scholar] [CrossRef]
- Neter, J.; Kutner, M.H.; Nachtsheim, C.J.; Wasserman, W. Applied Linear Statistical Models; McGraw-Hill & Irwin: Chicago, IL, USA, 1996. [Google Scholar]
- Chasco Yrigoyen, C.; García, I.; Vicéns, J. Modeling Spatial Variations in Household Disposable Income with Geographically Weighted Regression; University Library of Munich: Munich, Germany, 2007. [Google Scholar]
- Toulemon, L. Fertility among immigrant women: New data a new approach. Popul. Soc. 2004, 400, 1–4. [Google Scholar]
Category | Variable | Mean | Std. Dev. | Min. | Max. |
---|---|---|---|---|---|
Dependent variable | Total Fertility Rate | 1.33 | 0.26 | 0.81 | 2.46 |
Independent variable | Childcare Centers (per 1000) | 17.48 | 4.27 | 7.38 | 31.79 |
Female Education (%) | 35.24 | 11.42 | 18.36 | 79.15 | |
(log) Population Density | 2.84 | 0.94 | 1.25 | 4.42 | |
Net Migration Rate (%) | 0.112 | 2.026 | –4.4 | 16.3 | |
International Marriage (%) | 6.25 | 3.10 | 2.45 | 20.00 | |
Population Growth (%) | 0.39 | 1.96 | –3.05 | 15.51 |
Variable | Coefficient | Std. Error | t-Value | p-Value | VIF | |
---|---|---|---|---|---|---|
Constant | 2.04 *** | 0.098 | 20.763 | 0.000 | — | |
Childcare Center (per 1000 children) | –0.009 *** | 0.003 | –2.820 | 0.000 | 1.129 | |
Female Education (%) | –0.005 *** | 0.001 | –3.338 | 0.000 | 1.929 | |
(log) Population Density () | –0.122 *** | 0.020 | –6.093 | 0.000 | 2.307 | |
Net migration Rate (%) | 0.001 | 0.006 | 0.107 | 0.914 | 1.022 | |
International Marriage (%) | –0.009 * | 0.005 | –1.681 | 0.094 | 1.766 | |
Population Growth (%) | 0.042 *** | 0.007 | 6.299 | 0.000 | 1.067 | |
OLS Diagnostics | AIC | –93.37 | Koenker(BP) | 34.584 *** | Moran’s I | 0.035 *** |
Adj | 0.440 | Jarque–Bera | 122.996 *** |
Variable | GWR Coefficients | % of (+) or (−) Coefficients | % of t-Values | ||||
---|---|---|---|---|---|---|---|
Min | Max | Mean | Std. | (+) | (−) | p < 0.1 | |
Childcare Centers (per 1000 children) | −0.027 | 0.005 | −0.007 | 0.008 | 15.08% | 84.92% | 30.95% |
Female Education (%) | −0.012 | 0.003 | −0.006 | 0.003 | 3.97% | 96.03% | 81.75% |
(log)Population Density () | −0.159 | 0.046 | −0.104 | 0.041 | 1.98% | 98.02% | 77.38% |
Net Migration Rate (%) | −0.014 | 0.025 | −0.002 | 0.005 | 30.56% | 69.44% | 0.79% |
International Marriage (%) | −0.059 | 0.003 | −0.002 | 0.013 | 3.57% | 96.43% | 55.95% |
Population Growth (%) | 0.015 | 0.076 | 0.044 | 0.013 | 100% | 0% | 94.84% |
GWR Diagnostics | Adj | 0.548 | AIC | −127.502 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, M.; Ko, W.; Choi, Y.; Cho, Y. Spatial Variations in Fertility of South Korea: A Geographically Weighted Regression Approach. ISPRS Int. J. Geo-Inf. 2019, 8, 262. https://doi.org/10.3390/ijgi8060262
Jung M, Ko W, Choi Y, Cho Y. Spatial Variations in Fertility of South Korea: A Geographically Weighted Regression Approach. ISPRS International Journal of Geo-Information. 2019; 8(6):262. https://doi.org/10.3390/ijgi8060262
Chicago/Turabian StyleJung, Myunggu, Woorim Ko, Yeohee Choi, and Youngtae Cho. 2019. "Spatial Variations in Fertility of South Korea: A Geographically Weighted Regression Approach" ISPRS International Journal of Geo-Information 8, no. 6: 262. https://doi.org/10.3390/ijgi8060262
APA StyleJung, M., Ko, W., Choi, Y., & Cho, Y. (2019). Spatial Variations in Fertility of South Korea: A Geographically Weighted Regression Approach. ISPRS International Journal of Geo-Information, 8(6), 262. https://doi.org/10.3390/ijgi8060262