Automatic Discovery of Railway Train Driving Modes Using Unsupervised Deep Learning
Abstract
:1. Introduction
1.1. Background
- Large number of modes. Compared to existing transportation modes, MDRTs are more inclined to describe differences and commence at the level of microcosmic driving operation [2,14]. Thus, the number of modes in MDRTs is much greater than that of existing mode detections. Figure 1 illustrates some of the modes corresponding to two running plans (i.e., stop at Station1-stop at Station2 and stop at Station1-pass Station2) as an example. Modes 0–2 stop at both Station1 and Station2. Modes 3–5 stop only at Station1 and pass Station2. These modes will be more complicated when the plans are expanded (e.g., pass Station1-stop at Station2 and pass Station1-pass Station2). Furthermore, the railway consists of a large number of stations and sections. MDRTs that exist in different sections are characterized by large differences. This situation further increases the need for unsupervised learning.
- Complex structures in the modes. Operators have previously used the running time to distinguish MDRTs. This method is inefficient; many modes are too close in running time to be distinguished [2]. Therefore, a method that fully considers the internal structure of the driving processes is required. However, the inner structure of these modes is complex, especially when multiple phases exist. For example, both mode 3 and mode 4 in Figure 1 have two unfixed-location acceleration phases, which are difficult to classify manually. The difficulty of MDRT analyses caused by the multiple phases has also been mentioned in other studies [6,7,15]. There remains no effective way to automatically discover a large number of modes from this type of complex-structure data.
- Multi-profile data. The integrated trajectory data are aggregated time-series data that contain multiple profiles obtained from built-in locomotive control and information systems. We call this integrated trajectory data because all these profiles rely on spatio-temporal GPS trajectories for storage.
- iv.
- Lack of labeled data. The information system used by railways was originally designed as a safety-guard system that can assist drivers or dispatchers in avoiding over-speed or violation of signals. Neither the interface nor the built-in function modules are designed for automated analysis. Therefore, there are no ready-made automated analysis results. In addition, as sequence data with complex structures as well as multiple profiles, integrated railway trajectory data are difficult to label manually. On the one hand, only a small number of personnel with certain experience can recognize the modes existing in the data. On the other hand, multi-profile integrated trajectory data can hardly be analyzed directly by humans, which makes manual labeling more difficult. Given such limited labeled data, supervised models ultimately suffer from overfitting when adapted to very flexible deep neural networks.
- Lack of benchmark. Research on MDRTs is still in its infancy; thus, there is no well-accepted benchmark data, which will hinder the evaluation of the unsupervised learning models.
- Prior knowledge is not accurate. Even experienced employees on site may have an incorrect or inadequate understanding of the mode distribution.
- We propose five unsupervised deep learning models and prove that they achieve better performance (by 27.64% on average) than classical unsupervised learning models on real and artificial datasets with different scales. Additionally, we prove that the adversarial autoencoder clustering model obtains the best performance.
- We prove that integrated trajectory data can improve the accuracy of unsupervised learning compared to pure GPS trajectory data (by approximately 13.78%).
- We discover the mode distribution in real dataset and analyze their characteristics based on phases.
- We measure the difference between model-predicted distributions of data and the labeled distributions by operators, namely, the gap between the unsupervised learning outcomes and the subjective recognition results, based on indices with ground-truth labels.
1.2. Related Works
2. Methodologies
2.1. Methodology Set Up
2.2. Unsupervised Deep Learning Models
2.2.1. Parameters Tuning
2.2.2. Adversarial Autoencoder Clustering Model (AAEC)
2.2.3. Deep Embedded Clustering (DEC)
2.2.4. Model Consisting of AAE and KLD-based Cluster (AAEKC)
2.2.5. Model Consisting of SAE and CatGAN (SAECC)
2.2.6. Model Consisting of AAE and CatGAN (AAECC)
2.3. Evaluation Metric
2.3.1. Evaluation Indices Without Ground-Truth Labels
2.3.2. Evaluation Indices with Ground-Truth Labels
2.3.3. Cluster Number Determination and Partial Data Labeling
3. Results and Discussion
3.1. Experimental Settings
3.2. Results and Discussions
3.2.1. Result and Discussion of Step (i)
3.2.2. Result and Discussion of Step (ii)
- (1)
- The performances of almost all models were relatively high on the balanced datasets (ABSD and ABLD) and relatively low on the unbalanced datasets (AUBSD, AUBLD, and RD9). For example, , , and on the balanced datasets were larger than on the unbalanced datasets. The imbalance of data had a greater impact on classical models than the proposed deep learning models. This was expressed in the corresponding reduction in the indices: For example, the of k-means was 2331.6 on the ABSD and 2025.0 on the AUBSD, a reduction of 13.1%. Correspondingly, the of AAEC was 2399.9 on the ABSD and 2253.1 on the AUBSD, decreasing by 6.1%. A similar situation existed for the other indices.
- (2)
- By analyzing the performance of each model individually, we found that when the dataset was small, there was only a small difference between the performances of the models. As the scale increased, the performances of the models began to decrease. For example, the CatGAN-based models performed well on small datasets but less so on the large datasets. Classical models poorly handled the large datasets; their performances decreased significantly on the AUBLD and ABLD datasets. For example, on the AUBSD dataset, the of SEC was 7.2. However, on the AUBLD, the of SEC increased by 56.9% (11.3). In contrast, the deep learning methods, especially DEC and AAEC, still achieved relatively high performances on the large datasets, although they did show a decline.
3.2.3. Result and Discussion of Step (iii)
3.2.4. Result and Discussion of Step (iv)
3.3. The Relationship between Discovered MDRT and Railway Carrying Capacity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
AAEC | 0 1 | 0 | 0 | 0 | 0 | 1 | 2 |
---|---|---|---|---|---|---|---|
Encoder &decoder (Layer1&2) | 1500.0 2 | 1000.6 | 2001.8 | 1243.9 | 2901.8 | 1743.0 | 2981.0 |
(1500) | (1000) | (2001) | (1243) | (2901) | (1743) | (2981) | |
3101.6 | 3890.0 | 3120.7 | 3000.0 | 3081.0 | 3500.0 | 3181.0 | |
(3101) | (3890) | (3120) | (3000) | (3081) | (3500) | (3181) | |
D1 (Layer1&2) | 2001.0 | 2301.0 | 3001.0 | 2201.0 | 1001.0 | 2391.0 | 1031.0 |
(2001) | (2301) | (3001) | (2201) | (1001) | (2391) | (1031) | |
3210.0 | 3110.7 | 2210.0 | 3210.0 | 2210.0 | 3210.0 | 2290.2 | |
(3210) | (3110) | (2210) | (3210) | (2210) | (3210) | (2290) | |
D2 (Layer1&2) | 2108.0 | 2138.8 | 3108.0 | 2148.7 | 1108.0 | 2248.7 | 1208.0 |
(2108) | (2138) | (3108) | (2148) | (1108) | (2248) | (1208) | |
3980.8 | 3080.0 | 3080.8 | 3280.8 | 1980.8 | 3180.8 | 1080.8 | |
(3980) | (3080) | (3080) | (3280) | (1980) | (3180) | (1080) | |
DVI | 0.98 | 1.21 | 1.82 | 1.01 | 1.76 | 1.21 | 1.65 |
AAEC | 3 1 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|
Encoder &decoder (Layer1&2) | 1700.0 2 | 1921.6 | 2101.0 | 2890.0 | 3000.8 | 3102.0 | 2781.0 |
(1700) | (1921) | (2101) | (2890) | (3000) | (3102) | (2781) | |
3201.6 | 3490.0 | 3120.7 | 3020.0 | 3000.3 | 3500.0 | 2881.0 | |
(3201) | (3490) | (3120) | (3020) | (3000) | (3500) | (2881) | |
D1 (Layer1&2) | 2101.0 | 2801.0 | 3013.0 | 3091.2 | 3000.9 | 2980.0 | 3131.0 |
(2101) | (2801) | (3013) | (3091) | (3000) | (2980) | (3131) | |
3310.0 | 3210.7 | 3810.0 | 3010.0 | 3000.1 | 3010.0 | 3290.2 | |
(3310) | (3210) | (3810) | (3010) | (3000) | (3010) | (3290) | |
D2 (Layer1&2) | 2908.2 | 2038.8 | 2308.8 | 2848.7 | 3000.8 | 3048.7 | 3208.6 |
(2908) | (2038) | (2308) | (2848) | (3000) | (3048) | (3208) | |
3780.8 | 3280.0 | 2080.8 | 3180.8 | 3000.5 | 3280.8 | 2080.8 | |
(3780) | (3280) | (2080) | (3180) | (3000) | (3280) | (2080) | |
DVI | 1.90 | 2.39 | 2.01 | 2.89 | 3.01 | 2.90 | 2.65 |
DEC | 0 1 | 0 | 0 | 0 | 0 | 1 | 2 |
---|---|---|---|---|---|---|---|
Encoder &decoder (Layer1&2&3) | 1000.0 2 | 1010.6 | 2001.8 | 2243.9 | 1901.8 | 1843.0 | 2081.0 |
(1000) | (1010) | (2001) | (2243) | (1901) | (1843) | (2081) | |
2101.6 | 1890.0 | 2120.7 | 1090.0 | 3821.0 | 3570.0 | 3081.0 | |
(2101) | (1890) | (2120) | (1090) | (3821) | (3570) | (3081) | |
1920.9 | 2018.0 | 2098.7 | 1237.9 | 3089.3 | 2002.2 | 1986.6 | |
(1920) | (2018) | (2098) | (1237) | (3089) | (2002) | (1986) | |
DVI | 1.32 | 1.01 | 0.82 | 1.10 | 1.26 | 1.31 | 0.98 |
DEC | 3 1 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|
Encoder &decoder (Layer1&2&3) | 1790.0 2 | 2021.6 | 2101.0 | 1890.0 | 1301.8 | 1000.7 | 1200.0 |
(1790) | (2021) | (2101) | (1890) | (1301) | (1000) | (1200) | |
2201.6 | 2490.0 | 1820.7 | 1320.0 | 1031.0 | 1000.4 | 1012.3 | |
(2201) | (2490) | (1820) | (1320) | (1031) | (1000) | (1012) | |
2087.2 | 1301.7 | 2910 | 2012.3 | 1532.0 | 2000.8 | 1021.4 | |
(2087) | (1301) | (2910) | (2012) | (1532) | (2000) | (1021) | |
DVI | 1.58 | 1.86 | 2.30 | 2.70 | 2.96 | 3.13 | 2.90 |
AAEKC | 0 1 | 0 | 0 | 0 | 0 | 1 | 2 |
---|---|---|---|---|---|---|---|
Encoder &decoder (Layer1&2) | 1200.0 2 | 1900.6 | 3401.8 | 1243.9 | 2201.8 | 2043.0 | 2481.0 |
(1200) | (1900) | (3401) | (1243) | (2201) | (2043) | (2481) | |
3001.6 | 3090.0 | 3920.7 | 2000.0 | 3381.0 | 3300.0 | 3187.0 | |
(3001) | (3090) | (3920) | (2000) | (3381) | (3300) | (3187) | |
D (Layer1&2) | 2001.0 | 3201.0 | 3601.0 | 2101.0 | 3201.0 | 3391.0 | 3131.0 |
(2001) | (3201) | (3601) | (2101) | (3201) | (3391) | (3131) | |
2210.0 | 3010.7 | 2010.0 | 3010.0 | 1210.0 | 3190.0 | 3290.2 | |
(2210) | (3010) | (2010) | (3010) | (1210) | (3190) | (3290) | |
DVI | 1.21 | 1.00 | 1.93 | 1.32 | 1.52 | 2.31 | 2.87 |
AAEKC | 3 1 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|
Encoder &decoder (Layer1&2) | 2900.0 2 | 3021.6 | 3000.0 | 3190.0 | 3030.8 | 3182.0 | 3381.0 |
(2900) | (3021) | (3000) | (3190) | (3030) | (3182) | (3381) | |
3001.6 | 3090.0 | 3000.3 | 3002.0 | 3231.0 | 3100.0 | 2981.0 | |
(3001) | (3090) | (3000) | (3002) | (3231) | (3100) | (2981) | |
D (Layer1&2) | 2808.8 | 3138.8 | 3000.7 | 3108.3 | 3312.8 | 3001.7 | 3020.8 |
(2808) | (3138) | (3000) | (3108) | (3312) | (3001) | (3020) | |
3380.8 | 3080.0 | 3000.8 | 3100.2 | 3187.8 | 3180.8 | 3000.8 | |
(3380) | (3080) | (3000) | (3100) | (3187) | (3180) | (3000) | |
DVI | 2.89 | 2.91 | 3.00 | 2.98 | 2.81 | 2.90 | 2.85 |
SAECC | 0 1 | 0 | 0 | 0 | 0 | 1 | 2 |
---|---|---|---|---|---|---|---|
Encoder &decoder (Layer1&2&3) | 1100.0 2 | 1000.6 | 2901.8 | 1043.9 | 2201.8 | 1503.0 | 1481.0 |
(1100) | (1000) | (2901) | (1043) | (2201) | (1503) | (1481) | |
2000.6 | 1090.0 | 2720.7 | 1700.0 | 1081.0 | 2300.0 | 2187.0 | |
(2000) | (1090) | (2720) | (1700) | (1081) | (2300) | (2187) | |
2890.7 | 2970.7 | 2086.0 | 2098.6 | 2365.8 | 2543.0 | 2290.0 | |
(2890) | (2970) | (2086) | (2098) | (2365) | (2543) | (2290) | |
G (Layer1&2) | 501.7 | 590.6 | 890.6 | 1000.6 | 753.8 | 600.6 | 800.8 |
(501) | (590) | (890) | (1000) | (753) | (600) | (800) | |
689.6 | 708.7 | 1087.8 | 1342.6 | 1006.7 | 1109.0 | 1090.0 | |
(689) | (708) | (1087) | (1342) | (1006) | (1109) | (1090) | |
D (Layer1& 2&3&4&5) | 1201.0 | 2901.0 | 2601.0 | 2101.0 | 2801.0 | 2901.0 | 2131.0 |
(1201) | (29001) | (2601) | (2101) | (2801) | (2901) | (2131) | |
2010.0 | 2990.7 | 2010.0 | 2010.0 | 1210.0 | 2990.0 | 2590.2 | |
(2010) | (2990) | (2010) | (2010) | (1210) | (2990) | (2590) | |
1021.9 | 1000.0 | 2012.7 | 892.0 | 2000.8 | 1002.7 | 842.0 | |
(1021) | (1000) | (2012) | (892) | (2000) | (1002) | (842) | |
2001.9 | 501.8 | 3512.3 | 722.0 | 3021.0 | 1730.9 | 1687.0 | |
(2001) | (501) | (3512) | (722) | (3021) | (1730) | (1687) | |
3019.0 | 801.9 | 1092.9 | 523.9 | 2712.0 | 1420.8 | 1021.9 | |
(3019) | (801) | (1092) | (523) | (2712) | (1420) | (1021) | |
DVI | 0.65 | 0.89 | 0.93 | 0.82 | 0.70 | 1.01 | 0.98 |
SAECC | 3 1 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|
Encoder &decoder (Layer1&2&3) | 1000.0 2 | 1900.6 | 1501.8 | 1243.9 | 1201.8 | 1000.0 | 1001.0 |
(1000) | (1900) | (1501) | (1243) | (1201) | (1000) | (1001) | |
2001.6 | 2890.0 | 2020.7 | 2000.0 | 1381.0 | 1000.8 | 1187.0 | |
(2001) | (2890) | (2020) | (2000) | (1381) | (1000) | (1187) | |
2210.7 | 2098.0 | 2346.0 | 2008.9 | 1908.8 | 2000.1 | 2406.0 | |
(2210) | (2098) | (2346) | (2008) | (1908) | (2000) | (2406) | |
G (Layer1&2) | 700.6 | 600.0 | 654.8 | 598.0 | 500.6 | 500.8 | 510.7 |
(700) | (600) | (654) | (598) | (500) | (500) | (510) | |
976.6 | 987.0 | 1000.0 | 998.7 | 1020.9 | 1000.0 | 1050.4 | |
(976) | (987) | (1000) | (998) | (1020) | (1000) | (1050) | |
D (Layer1& 2&3&4&5) | 1001.0 | 1201.0 | 1080.0 | 1101.0 | 1301.0 | 1000.7 | 1031.0 |
(1001) | (1201) | (1080) | (1101) | (1301) | (1000) | (1031) | |
810.0 | 510.7 | 608.0 | 810.0 | 600.0 | 500.6 | 690.2 | |
(810) | (510) | (608) | (810) | (600) | (500) | (690) | |
1001.9 | 800.0 | 912.7 | 702.0 | 500.8 | 250.7 | 842.0 | |
(1001) | (800) | (912) | (702) | (500) | (250) | (842) | |
1701.9 | 401.8 | 512.3 | 682.0 | 521.0 | 250.9 | 1687.0 | |
(1701) | (401) | (512) | (682) | (521) | (250) | (1687) | |
2019.0 | 701.9 | 902.9 | 623.9 | 512.0 | 250.8 | 1021.9 | |
(2019) | (701) | (902) | (623) | (512) | (250) | (1021) | |
DVI | 1.21 | 1.30 | 1.88 | 2.09 | 2.32 | 2.43 | 2.27 |
AAECC | 0 1 | 0 | 0 | 0 | 0 | 1 | 2 |
---|---|---|---|---|---|---|---|
Encoder &decoder (Layer1&2&3) | 1000.0 2 | 1300.6 | 1901.8 | 1243.9 | 2201.8 | 1203.0 | 1281.0 |
(1000) | (1300) | (1901) | (1243) | (2201) | (1203) | (1281) | |
1000.6 | 1190.0 | 2020.7 | 1000.0 | 2081.0 | 1300.0 | 1807.0 | |
(1000) | (1190) | (2020) | (1000) | (2081) | (1300) | (1807) | |
2090.7 | 2070.7 | 2986.0 | 1098.6 | 2065.8 | 1543.0 | 2090.0 | |
(2090) | (2070) | (2986) | (1098) | (2065) | (1543) | (2090) | |
G2 (Layer1&2) | 701.7 | 790.6 | 1090.6 | 900.6 | 1093.8 | 680.6 | 700.8 |
(701) | (790) | (1090) | (900) | (1093) | (680) | (700) | |
889.6 | 1008.7 | 887.8 | 1042.6 | 806.7 | 1309.0 | 1190.0 | |
(889) | (1008) | (887) | (1042) | (806) | (1309) | (1190) | |
D1 (Layer1&2) | 3201.0 | 2901.0 | 1601.0 | 2101.0 | 2801.0 | 1901.0 | 2931.0 |
(3201) | (2901) | (1601) | (2101) | (2801) | (1901) | (2931) | |
3010.0 | 1990.7 | 3010.0 | 2010.0 | 2210.0 | 1990.0 | 2990.2 | |
(3010) | (1990) | (3010) | (2010) | (2210) | (1990) | (2990) | |
D2 (Layer1& 2&3&4&5) | 2001.8 | 3018.2 | 2123.0 | 2001.8 | 1023.6 | 1203.0 | 2201.0 |
(2001) | (3018) | (2123) | (2001) | (1023) | (1203) | (2201) | |
1082.8 | 672.9 | 3238.2 | 1023.8 | 789.8 | 568.0 | 1023.9 | |
(1082) | (672) | (3238) | (1023) | (789) | (568) | (1023) | |
1203.8 | 2312.0 | 2012.7 | 788.9 | 1004.9 | 1003.0 | 989.0 | |
(1203) | (2312) | (2012) | (788) | (1004) | (1003) | (989) | |
2031.8 | 1003.8 | 3129.0 | 1002.4 | 765.3 | 891.0 | 765.0 | |
(2031) | (1003) | (3129) | (1002) | (765) | (891) | (765) | |
3321.8 | 1024.8 | 1292.8 | 560.7 | 3231.0 | 2001.9 | 1652.0 | |
(3321) | (1024) | (1292) | (560) | (3231) | (2001) | (1652) | |
DVI | 0.75 | 0.79 | 0.90 | 0.96 | 0.80 | 0.91 | 1.02 |
AAECC | 3 1 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|
Encoder &decoder (Layer1&2&3) | 1100.0 2 | 1300.6 | 1201.8 | 1000.9 | 1001.8 | 1030.5 | 1481.0 |
(1100) | (1300) | (1201) | (1000) | (1001) | (1030) | (1481) | |
1000.6 | 1190.0 | 1200.7 | 1000.0 | 1001.0 | 1000.1 | 2287.0 | |
(1000) | (1190) | (1200) | (1000) | (1001) | (1000) | (2287) | |
2490.7 | 2070.7 | 2186.0 | 2000.6 | 2015.8 | 2000.5 | 2090.0 | |
(2490) | (2070) | (2186) | (2000) | (2015) | (2000) | (2090) | |
G2 (Layer1&2) | 901.7 | 980.6 | 890.6 | 500.6 | 553.8 | 500.6 | 600.8 |
(901) | (980) | (890) | (500) | (553) | (500) | (600) | |
1089.6 | 1008.7 | 1000.8 | 1000.6 | 1106.7 | 1000.2 | 1290.0 | |
(1089) | (1008) | (1000) | (1000) | (1106) | (1000) | (1290) | |
D1 (Layer1&2) | 3201.0 | 2901.0 | 2801.0 | 3000.0 | 3201.0 | 3000.8 | 2631.0 |
(3201) | (2901) | (2801) | (3000) | (3201) | (3000) | (2631) | |
3010.0 | 2890.7 | 3010.0 | 3000.9 | 3010.0 | 3000.7 | 2590.2 | |
(3010) | (2890) | (3010) | (3000) | (3010) | (3000) | (2590) | |
D2 (Layer1& 2&3&4&5) | 1201.8 | 1018.2 | 1023.0 | 1000.8 | 1023.6 | 1000.1 | 1201.0 |
(1201) | (1018) | (1023) | (1000) | (1023) | (1000) | (1201) | |
820.8 | 972.9 | 838.2 | 500.8 | 689.8 | 520.8 | 623.9 | |
(820) | (972) | (838) | (500) | (689) | (520) | (623) | |
880.0 | 1327.0 | 708.0 | 250.9 | 230.8 | 200.8 | 432.9 | |
(880) | (1327) | (708) | (250) | (230) | (200) | (432) | |
700.8 | 800.3 | 500.9 | 250.8 | 300.9 | 280.9 | 320.9 | |
(700) | (800) | (500) | (250) | (300) | (280) | (320) | |
1023.9 | 680.0 | 300.8 | 250.0 | 276.8 | 230.4 | 302.8 | |
(1023) | (680) | (300) | (250) | (276) | (230) | (302) | |
DVI | 1.60 | 1.78 | 2.07 | 2.35 | 2.32 | 2.30 | 2.01 |
References
- Bešinović, N. Integrated Capacity Assessment and Timetabling Models for Dense Railway Networks. Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands, 2017. [Google Scholar]
- Zheng, H.; Cui, Z.; Zhang, X. Identifying modes of driving railway trains from gps trajectory data: An ensemble classifier-based approach. ISPRS Int. J. Geo-Inf. 2018, 7, 308. [Google Scholar] [CrossRef]
- Bešinović, N.; Goverde, R.M.P. Capacity Assessment in Railway Networks; Springer: Berlin, Germany, 2018. [Google Scholar]
- Besinovic, N.; Roberti, R.; Quaglietta, E.; Cacchiani, V.; Toth, P.; Goverde, R.M.P. Micro-macro approach to robust timetabling. In Proceedings of the International Seminar on Railway Operations Modelling and Analysis, Tokyo, Japan, 23–26 March 2015. [Google Scholar]
- Goverde, R.M.P. A delay propagation algorithm for large-scale railway traffic networks. Transp. Res. Part C Emerg. Technol. 2010, 18, 269–28711. [Google Scholar] [CrossRef]
- Longo, G.; Medeossi, G.; Nash, A. Estimating train motion using detailed sensor data. In Proceedings of the Transportation Research Board 91st Annual Meeting, Washington, DC, USA, 22–26 January 2012; pp. 1–6. [Google Scholar]
- Medeossi, G.; Longo, G.; Fabris, S.D. A method for using stochastic blocking times to improve timetable planning. J. Rail Transp. Plan. Manag. 2011, 1, 1–13. [Google Scholar] [CrossRef]
- Bešinović, N.; Goverde, R.M.P.; Quaglietta, E.; Roberti, R. An integrated micro–macro approach to robust railway timetabling. Transp. Res. Part B Methodol. 2016, 87, 14–32. [Google Scholar] [CrossRef]
- Zhou, L.; Tong, L.; Chen, J.; Tang, J.; Zhou, X. Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks. Transp. Res. Part B Methodol. 2017, 97, 157–181. [Google Scholar] [CrossRef] [Green Version]
- Cacchiani, V.; Toth, P. Nominal and robust train timetabling problems. Eur. J. Oper. Res. 2012, 219, 727–737. [Google Scholar] [CrossRef]
- Goerigk, M.; Schöbel, A. Recovery-to-optimality: A new two-stage approach to robustness with an application to aperiodic timetabling. Comput. Oper. Res. 2014, 52, 1–15. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Cai, H.; Zheng, Y. A monitoring data mining based approach to measuring and correcting timetable parameters. Procedia-Soc. Behav. Sci. 2012, 43, 644–652. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Yi, Z.; Chen, J. Method for the measurement and correction of train diagram parameters based on monitoring data mining. China Railw. Sci. 2011, 32, 117–121. [Google Scholar]
- Xiao, Z.; Wang, Y.; Fu, K.; Wu, F. Identifying different transportation modes from trajectory data using tree-based ensemble classifiers. ISPRS Int. J. Geo-Inf. 2017, 6, 57. [Google Scholar] [CrossRef]
- Fabris, S.D.; Longo, G.; Medeossi, G. Automated Analysis of Train Event Recorder Data to Improve Micro-Simulation Models. In Proceedings of the COMPRAIL 2010 Conference, Beijing, China, 31 August–2 September 2010; pp. 575–583. [Google Scholar]
- Powell, J.P.; Palacín, R. Driving style for ertms level 2 and conventional lineside signalling: An exploratory study. Ing. Ferrov. 2016, 71, 927–942. [Google Scholar]
- Goverde, R.M.P.; Daamen, W.; Hansen, I.A. Automatic identification of route conflict occurrences and their consequences. Comput. Railw. XI 2008, 103, 473–482. [Google Scholar] [Green Version]
- Albrecht, T.; Goverde, R.M.P.; Weeda, V.A.; Luipen, J.V. Reconstruction of Train Trajectories from Track Occupation Data to Determine the Effects of a Driver Information System. In Proceedings of the COMPRAIL 2006 Conference, Prague, Czech Republic, 31 August–2 September 2006; pp. 207–216. [Google Scholar]
- Dodge, S.; Weibel, R.; Forootan, E. Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects. Comput. Environ. Urban Syst. 2009, 33, 419–434. [Google Scholar] [CrossRef] [Green Version]
- Elhoushi, M.; Georgy, J.; Noureldin, A.; Korenberg, M. Online motion mode recognition for portable navigation using low-cost sensors. Navigation 2016, 62, 273–290. [Google Scholar] [CrossRef]
- Schuessler, N.; Axhausen, K.W. Processing gps raw data without additional information. Transp. Res. Rec. 2009, 2105, 28–36. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, L.; Wang, L.; Xie, X. Learning transportation mode from raw gps data for geographic applications on the web. In Proceedings of the International Conference on World Wide Web, WWW 2008, Beijing, China, 21–25 April 2008; pp. 247–256. [Google Scholar]
- Wagner, D.P. Lexington Area Travel Data Collection Test: Gps for Personal Travel Surveys; Battelle Transporation Division: Columbus, OH, USA, 1997; pp. 1–92. [Google Scholar]
- Yalamanchili, L.; Pendyala, R.; Prabaharan, N.; Chakravarthy, P. Analysis of global positioning system-based data collection methods for capturing multistop trip-chaining behavior. Transp. Res. Rec. J. Transp. Res. Board 1999, 1660, 58–65. [Google Scholar] [CrossRef]
- Draijer, G.; Kalfs, N.; Perdok, J. Global positioning system as data collection method for travel research. Opt. Express 2000, 1719, 147–153. [Google Scholar] [CrossRef]
- Wolf, J.L. Using Gps Data Loggers to Replace Travel Diaries in the Collection of Travel Data. Ph.D. Dissertation, Georgia Institute of Technology, School of Civil and Environmental Engineering, Atlanta, GA, USA, 2000; pp. 58–65. [Google Scholar]
- Reddy, S.; Min, M.; Burke, J.; Estrin, D.; Hansen, M.; Srivastava, M. Using mobile phones to determine transportation modes. ACM Trans. Sens. Netw. 2010, 6, 1–27. [Google Scholar] [CrossRef]
- Stenneth, L.; Wolfson, O.; Yu, P.S.; Xu, B. Transportation mode detection using mobile phones and gis information. In Proceedings of the ACM Sigspatial International Symposium on Advances in Geographic Information Systems, Acm-Gis 2011, Chicago, IL, USA, 1–4 November 2011; pp. 54–63. [Google Scholar]
- Widhalm, P.; Nitsche, P.; Brändle, N. Transport mode detection with realistic smartphone sensor data. In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; pp. 573–576. [Google Scholar]
- Das, R.D.; Winter, S. Detecting urban transport modes using a hybrid knowledge driven framework from gps trajectory. Int. J. Geo-Inf. 2016, 5, 207. [Google Scholar] [CrossRef]
- Mardia, K.V.; Jupp, P.E. Directional Statistics; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Zheng, Y.; Li, Q.; Chen, Y.; Xie, X.; Ma, W.Y. Understanding mobility based on gps data. In Proceedings of the International Conference on Ubiquitous Computing, Seoul, Korea, 21–24 September 2008; pp. 312–321. [Google Scholar]
- Deng, H.; Runger, G.; Tuv, E.; Vladimir, M. A time series forest for classification and feature extraction. Inf. Sci. 2013, 239, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, Y.; Zhao, W. An improved hybrid method for enhanced road feature selection in map generalization. Int. J. Geo-Inf. 2017, 6, 196. [Google Scholar] [CrossRef]
- Qian, H.; Lu, Y. Simplifying gps trajectory data with enhanced spatial-temporal constraints. Int. J. Geo-Inf. 2017, 6, 329. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, Y.; Wang, A.; Wang, Y.; Chen, G. Traffic command gesture recognition for virtual urban scenes based on a spatiotemporal convolution neural network. ISPRS Int. J. Geo-Inf. 2018, 7, 37. [Google Scholar] [CrossRef]
- Gonzalez, P.A.; Weinstein, J.S.; Barbeau, S.J.; Labrador, M.A.; Winters, P.L.; Georggi, N.L.; Perez, R. Automating mode detection using neural networks and assisted gps data collected using gps-enabled mobile phones. In Proceedings of the 15th World Congress on Intelligent Transport Systems and ITS America’s 2008 Annual Meeting, New York, NY, USA, 16–20 November 2008. [Google Scholar]
- Maaten, L. Learning a parametric embedding by preserving local structure. In Artificial Intelligence and Statistics; Springer: Berlin, Germany, 2009; pp. 384–391. [Google Scholar]
- Dabiri, Z.; Lang, S. Comparison of independent component analysis, principal component analysis, and minimum noise fraction transformation for tree species classification using apex hyperspectral imagery. ISPRS Int. J. Geo-Inf. 2018, 7, 488. [Google Scholar] [CrossRef]
- Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408. [Google Scholar]
- Xie, J.; Girshick, R.; Farhadi, A. Unsupervised deep embedding for clustering analysis. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 478–487. [Google Scholar]
- Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.J.C.S. Adversarial autoencoders. arXiv, 2015; arXiv:1511.05644v2. [Google Scholar]
- Mukherjee, S.; Asnani, H.; Lin, E.; Kannan, S. Clustergan: Latent space clustering in generative adversarial networks. arXiv, 2018; arXiv:1809.03627v2. [Google Scholar]
- Springenberg, J.T. Unsupervised and semi-supervised learning with categorical generative adversarial networks. arXiv, 2015; arXiv:1511.06390v2. [Google Scholar]
- Lee, J.G.; Han, J.; Li, X. Trajectory outlier detection: A partition-and-detect framework. In Proceedings of the IEEE International Conference on Data Engineering, Cancun, Mexico, 7–12 April 2008. [Google Scholar]
- Goldin, D.Q.; Kanellakis, P.C. On Similarity Queries for Time-Series Data: Constraint Specification and Implementation; Springer: Berlin, Germany, 1995. [Google Scholar]
- Bergstra, J.; Bengio, Y. Algorithms for hyper-parameter optimization. In Proceedings of the International Conference on Neural Information Processing Systems, Granada, Spain, 12–15 December 2011; pp. 2546–2554. [Google Scholar]
- Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Sequential model-based optimization for general algorithm configuration. In Proceedings of the Learning and Intelligent Optimization—International Conference, Lion 5, Rome, Italy, 17–21 January 2011; pp. 507–523. [Google Scholar]
- Thornton, C.; Hutter, F.; Hoos, H.H.; Leytonbrown, K. Auto-weka: Combined selection and hyperparameter optimization of classification algorithms. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, Chicago, IL, USA, 11–14 August 2013; pp. 847–855. [Google Scholar]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Proc. Syst. 2012, 4, 2951–2959. [Google Scholar]
- Goodfellow, I.J. Nips 2016 tutorial: Generative adversarial networks. arXiv, 2016; arXiv:1701.00160v4. [Google Scholar]
- Yi, Y.; Dong, X.; Feiping, N.; Shuicheng, Y.; Yueting, Z. Image clustering using local discriminant models and global integration. IEEE Trans. Image Proc. 2010, 19, 2761–2773. [Google Scholar]
- Fahad, A.; Alshatri, N.; Tari, Z.; Alamri, A.; Khalil, I.; Zomaya, A.Y.; Foufou, S.; Bouras, A. A survey of clustering algorithms for big data: Taxonomy and empirical analysis. Emerg. Top. Comput. IEEE Trans. 2014, 2, 267–279. [Google Scholar] [CrossRef]
- Li, Y.; Yu, F. A new validity function for fuzzy clustering. In Proceedings of the International Conference on Computational Intelligence and Natural Computing, Wuhan, China, 6–7 June 2009; pp. 462–465. [Google Scholar]
- Zhang, K.; Sun, D.; Shen, S.; Zhu, Y. Analyzing spatiotemporal congestion pattern on urban roads based on taxi gps data. J. Transp. Land Use 2017, 10, 675–694. [Google Scholar] [CrossRef]
- Nie, F.; Zeng, Z.; Tsang, I.W.; Xu, D.; Zhang, C. Spectral embedded clustering: A framework for in-sample and out-of-sample spectral clustering. IEEE Trans. Neural Netw. 2011, 22, 1796–1808. [Google Scholar]
- Hartigan, J.A.; Wong, M.A. A K-Means Clustering Algorithm: Algorithm as 136; Wiley: Hoboken, NJ, USA, 1979; Volume 28, pp. 100–108. [Google Scholar]
Index | Sub-Networks | Structure 1 |
---|---|---|
1 | Encoder (Generator) | (3000, Leaky ReLU) − (3000, Leaky ReLU)− |
−(F 2 + C 4, Linear + Softmax) 5 | ||
2 | Decoder | (3000, Leaky ReLU) − (3000, Leaky ReLU) − (D 3, Linear) |
3 | Discriminator 1 | (3000, Leaky ReLU) − (3000, Leaky ReLU) − (1, Sigmoid) |
4 | Discriminator 2 | (3000, Leaky ReLU) − (3000, Leaky ReLU) − (1, Sigmoid) |
Index | Learning Type | Learning Sub-Networks | Iterations | Algorithm |
---|---|---|---|---|
I | Layer-wise | Encoder-Decoder | I: 2000 | SGD 1 |
II.1 | Layer-wise | Discriminator 1 | SGD 2 | |
II.2 | Layer-wise | Discriminator 2 | II: 2000 | SGD 2 |
II.3 | End-to-end | Generator | SGD 1 |
Index | Dropout Rate | Mini-Batch Size | Learning Rate | Convergence Threshold | Loss Function |
---|---|---|---|---|---|
I | 0.2 5 | 256 | 0.01 1 | —— | MSE 3 |
II.1 | 0 | 256 | 0.1 2 | —— | BCE 4 |
II.2 | 0 | 256 | 0.1 2 | —— | BCE 4 |
II.3 | 0.25 | 256 | 0.1 2 | —— | MSE 3 |
Index | Sub-Networks | Structure 1 |
---|---|---|
1 | Encoder | (1000, ReLU) − (1000, ReLU) − (2000, ReLU) − (F 2, Linear) |
2 | Decoder | (2000, ReLU) − (1000, ReLU) − (1000, ReLU) − (D 3, Linear) |
3 | Cluster Layer | (C 4, KL Divergence) |
Index | Learning Type | Learning Sub-Networks | Iterations | Algorithm |
---|---|---|---|---|
I.1 | Layer-wise | Encoder-Decoder | I: 2000 | SGD |
I.2 | End-to-end | Encoder-Decoder | SGD | |
II | End-to-end | Encoder-Cluster Layer | II: 50,000 | SGD 1 |
Index | Dropout Rate | Mini-Batch Size | Learning Rate | Convergence Threshold | Loss Function |
---|---|---|---|---|---|
I.1 | 0.2 | 256 | 0.1 1 | —— | MSE 2 |
I.2 | 0 | 256 | 0.1 1 | —— | MSE |
II | 0 | 256 | 0.01 | 0.10% | KLD 3 |
Index | Sub-Networks | Structure 1 |
---|---|---|
1 | Encoder (Generator) | (3000, Leaky ReLU) − (3000, Leaky ReLU) − (F 2, Sigmoid) |
2 | Decoder | (3000, Leaky ReLU) − (3000, Leaky ReLU) − (D 3, Linear) |
3 | Discriminator | (3000, Leaky ReLU) − (3000, Leaky ReLU) − (1, Sigmoid) |
4 | Cluster Layer | (C 4, KL Divergence) |
Index | Learning Type | Learning Sub-Networks | Iterations | Algorithm |
---|---|---|---|---|
I | Layer-wise | Encoder-Decoder | I: 2000 II: 2000 III: 50,000 | SGD 1 |
II.1 | Layer-wise | Discriminator 3 | SGD 2 | |
II.2 | End-to-end | Generator 3 | SGD 1 | |
III | End-to-end | Encoder-Cluster Layer | SGD 1 |
Index | Dropout Rate | Mini-Batch Size | Learning Rate | Convergence Threshold | Loss Function |
---|---|---|---|---|---|
I | 0.2 6 | 256 | 0.01 1 | —— | MSE 3 |
II.1 | 0 | 256 | 0.1 2 | —— | BCE 4 |
II.2 | 0.2 6 | 256 | 0.1 2 | —— | MSE 3 |
III | 0 | 256 | 0.01 | 0.10% | KLD 5 |
Index | Sub-Networks | Structure 1 |
---|---|---|
1 | Encoder | (1000, ReLU) − (1000, ReLU) − (2000, ReLU) − (F 2, Sigmoid) |
2 | Decoder | (2000, ReLU) − (1000, ReLU) − (1000, ReLU) − (D 3, Linear) |
3 | Generator | (500, Leaky ReLU) − (1000, Leaky ReLU) − (F 2, Sigmoid) |
4 | Discriminator | (1000, Leaky ReLU) − (500, Leaky ReLU) − (250, Leaky ReLU) − (250, Leaky ReLU) − (250, Leaky ReLU) − (C 4, Softmax) |
Index | Learning Type | Learning Sub-Networks | Iterations | Algorithm |
---|---|---|---|---|
I | Layer-wise | Encoder-Decoder | I: 2000 II: 5000 | SGD 1 |
II.1 | Layer-wise | Generator 2 | ADAM | |
II.2 | Layer-wise | Discriminator 2 | ADAM |
Dropout Rate | Mini-Batch Size | Learning Rate | Convergence Threshold | Loss Function | |
---|---|---|---|---|---|
I | 0.2 | 256 | 0.01 | —— | MSE 1 |
II.1 | 0 | 256 | 0.01 | —— | SE 2 |
II.2 | 0 | 256 | 0.01 | —— | SE 2 |
Index | Sub-Networks | Structure 1 |
---|---|---|
1 | Encoder | (1000, ReLU) − (1000, ReLU) − (2000, ReLU) − (F 2, Sigmoid) |
(Generator 1) | ||
2 | Decoder | (2000, ReLU) − (1000, ReLU) − (1000, ReLU) − (D 3, Linear) |
3 | Generator 2 | (500, Leaky ReLU) − (1000, Leaky ReLU) − (F 2, Sigmoid) |
4 | Discriminator 1 | (3000, Leaky ReLU) − (3000, Leaky ReLU) − (1, Sigmoid) |
5 | Discriminator 2 | (1000, Leaky ReLU) − (500, Leaky ReLU) − (250, Leaky ReLU) − (250, Leaky ReLU) − (250, Leaky ReLU) − (C 4, Softmax) |
Index | Learning Type | Learning Sub-Networks | Iterations | Algorithm |
---|---|---|---|---|
I | Layer-wise | Encoder-Decoder | I: 2000 II: 5000 | SGD 1 |
II.1 | Layer-wise | Discriminator 1 3 | SGD 2 | |
II.2 | End-to-end | Generator 1 3 | SGD 1 | |
III.1 | Layer-wise | Generator 2 3 | ADAM | |
III.2 | Layer-wise | Discriminator 2 3 | ADAM |
Index | Dropout Rate | Mini-Batch Size | Learning Rate | Convergence Threshold | Loss Function |
---|---|---|---|---|---|
I.1 | 0.2 5 | 256 | 0.01 1 | —— | MSE 3 |
I.2 | 0 | 256 | 0.1 2 | —— | BCE 4 |
I.3 | 0.2 5 | 256 | 0.12 | —— | MSE 3 |
II.1 | 0 | 256 | 0.01 | —— | SE 6 |
II.2 | 0 | 256 | 0.01 | —— | SE 6 |
ID | Index Name | Notation | D | C | EC | References |
---|---|---|---|---|---|---|
1 | Separation | 1 | 0 | ↑ | [53] | |
2 | Dunn Validity Index | 1 | 1 | ↑ | [53] | |
3 | L Value | 1 | 1 | ↑ | [54] | |
4 | Minimum Centroid Distance | 1 | 0 | — | [55] | |
5 | Compactness | 0 | 1 | ↓ | [53] | |
6 | Davies-Bouldin Index | 1 | 1 | ↓ | [53] |
ID | Index Name | Notation | References |
---|---|---|---|
1 | Cluster Accuracy | [53] | |
2 | Adjusted Rand Index | where | |
3 | Normalized Mutual Information | ||
where | |||
Index | Deep Models | Dataset 1 | Cluster Number |
---|---|---|---|
1.1 | AAEC | RD9 | |
1.2 | DEC | ||
1.3 | AAEKC | ||
1.4 | SAECC | ||
1.5 | AAECC |
Index | Feature Extractor | Cluster Model | Dataset 1 | Cluster Number |
---|---|---|---|---|
2.1 | Railway-specified features [2] | Spectral Embedded Clustering [56] | AUBSD AUBLD ABSD ABLD RD9 | Determined by the method in Section 2.3.3 |
2.2 | Railway-specified features [2] | k-means [57] | ||
2.3 | AAEC | |||
2.4 | DEC | |||
2.5 | AAEKC | |||
2.6 | SAECC | |||
2.7 | AAECC |
Index | Deep Models | Dataset 1 | Cluster Number |
---|---|---|---|
3.1 | The top performing model | RD9 PRD9 | Determined by the method in Section 2.3.3 |
3.2 | The second best performing model |
Index | Deep Models | Dataset 1 | Cluster Number |
---|---|---|---|
4.1 | AAEC | RD2 PRD2 | Determined by the method in Section 2.3.3 |
4.2 | DEC | ||
4.3 | AAEKC | ||
4.4 | SAECC | ||
4.5 | AAECC |
DBI | AAEC | DEC | AAEKC | SAECC | AAECC | k-Means | SEC |
---|---|---|---|---|---|---|---|
AUBLD | 7.95 | 8.36 | 8.60 | 8.61 | 8.99 | 14.08 | 11.27 |
ABLD | 9.28 | 8.36 | 8.59 | 8.94 | 8.11 | 12.15 | 11.25 |
RD9 | 8.58 | 9.08 | 8.24 | 9.06 | 8.51 | 12.81 | 10.05 |
Average value | |||||||
AUBLD | 8.50 | 12.68 | |||||
ABLD | 8.66 | 11.70 | |||||
RD9 | 8.69 | 11.43 | |||||
Performance improvement | |||||||
AUBLD | 32.94% | ||||||
ABLD | 26.01% | ||||||
RD9 | 23.95% |
Index | Mode | Phases (with Location Range km-km) 1 | Speed-Location Profiles 2 |
---|---|---|---|
1 | mode (c) | A(42,43)-Cr(43,43.5)-A(43.5,45)-Cr(45,49.8)-Co(49.8,52)-Cr(52,53.8)-B(53.8,54) | |
2 | mode (e) | A(42,45)-Cr(45,51)-B(51,52)-Cr(52,53.8)-B(53.8,54) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Cui, Z.; Zhang, X. Automatic Discovery of Railway Train Driving Modes Using Unsupervised Deep Learning. ISPRS Int. J. Geo-Inf. 2019, 8, 294. https://doi.org/10.3390/ijgi8070294
Zheng H, Cui Z, Zhang X. Automatic Discovery of Railway Train Driving Modes Using Unsupervised Deep Learning. ISPRS International Journal of Geo-Information. 2019; 8(7):294. https://doi.org/10.3390/ijgi8070294
Chicago/Turabian StyleZheng, Han, Zanyang Cui, and Xingchen Zhang. 2019. "Automatic Discovery of Railway Train Driving Modes Using Unsupervised Deep Learning" ISPRS International Journal of Geo-Information 8, no. 7: 294. https://doi.org/10.3390/ijgi8070294
APA StyleZheng, H., Cui, Z., & Zhang, X. (2019). Automatic Discovery of Railway Train Driving Modes Using Unsupervised Deep Learning. ISPRS International Journal of Geo-Information, 8(7), 294. https://doi.org/10.3390/ijgi8070294