Assessment and Benchmarking of Spatially Enabled RDF Stores for the Next Generation of Spatial Data Infrastructure
Abstract
:1. Introduction
2. Background and Related Work
2.1. Geospatial Semantic Web and Linked Data
2.2. Assessment and Benchmarking of Spatially Enabled RDF Stores
3. Benchmarking Datasets
3.1. ICOS Carbon Portal Metadata
3.2. Geographica Benchmarking Datasets
4. Evaluation Methodology
4.1. RDF Store Selection and Analysis
- The RDF store should be popular, well-known, and actively supported by a community or backed by a commercial vendor.
- The RDF store should support W3C standards, e.g., SPARQL 1.1.
- The RDF store should support semantic reasoning, which can be either triple materialization at load time or at query time (query rewriting), and the widely used reasoning types should be supported (e.g., RDFS, OWL, OWL2, OWL2-DL, etc.). Additionally, rule-based reasoning should be supported.
- The RDF store should have geospatial query capacity, preferably with GeoSPARQL support and compliance.
- Software components, architecture, deployment, and licensing;
- The means of data loading, query, and management;
- Utilization of software components from other solutions (e.g., if it is based on open-source frameworks);
- Supported semantic reasoning types;
- Geospatial query capacity and GeoSPARQL compliance;
- The employment of spatial indexing for geospatial data and the types of indexing;
- The popularity of the RDF stores is partially consulted from DB-Engines ranking (https://db-engines.com/en/ranking/rdf+store).
4.2. Performance Benchmark of Geospatial Query in RDF Stores
4.3. Implementation—Reusable Benchmark Deliverables
5. Results of RDF Store Selection and Analysis
- RDF4J 2.4.2: an open-source Java RDF framework under the license of Eclipse Distribution License, v1.0, formerly known as Sesame. It supports parsing, storing, inferencing, and querying RDF data. It supports SPARQL 1.1 and both ontological and rule-based reasoning. Inferred statements are materialized. It supports geospatial query in GeoSPARQL, and its spatial queries can be performed without spatial indexing or with Lucene Spatial (currently, Lucene Spatial in RDF4J results in errors). RDF4J can be used as an RDF store or a library that communicates and operates with many third-party storage solutions (RDF stores).
- Jena 3.9.0 + GeoSPARQL-Jena 1.0.3: an open-source Java framework for building Semantic Web and linked data applications. It supports SPARQL 1.1 and both ontological and rule-based reasoning. It provides both RDF API, which manipulates RDF data, and TDB, an RDF store solution. Jena is one of the most widely adopted RDF frameworks in various research and production projects. Jena itself has very limited spatial query capacity and does not support GeoSPARQL. The recently developed open-source plugin GeoSPARQL-Jena (https://github.com/galbiston/geosparql-jena) provides fully GeoSPARQL-compliant spatial query capacity with a custom spatial indexing technique. Both Jena and GeoSAPRQL-Jena are under Apache License 2.0.
- Virtuoso Enterprise 8.2: one of the most well-known RDF stores because of its adoption by DBpedia. It supports SPARQL 1.1 and ontological and rule-based reasoning. The reasoning is performed by query rewriting, so inferred statements are not materialized. It has had geospatial query support for a few years, and it started to support GeoSPARQL in its commercial version in 2018 (it also claimed to support GeoSPARQL in its open-source edition, but, to date, no release has appeared, so we chose to use the commercial version). It uses R-tree as its spatial indexing technique. A proprietary license for the commercial edition and a GPL 2 license for the open-source version are used.
- Stardog 6.0.1: a commercial knowledge graph product that supports parsing, storing, inferencing, and querying RDF data. It supports SPARQL 1.1 and both ontological and rule-based reasoning with a query rewriting strategy. It supports a few GeoSPARQL query functions with Lucene Spatial for spatial indexing. It is actively supported by a commercial company and uses proprietary licenses.
- GraphDB 8.8.0: a linked data platform built upon RDF4J. It is a commercial solution that provides support for SPARQL 1.1 and ontological and rule-based reasoning. It supports GeoSPARQL with spatial indexing of Lucene Spatial (specifically, quad-prefix-tree and geohash-prefix-tree). It utilizes different strategies for handling queries with and without using a spatial index. GraphDB is under proprietary licenses.
6. Results of the Spatially Enabled RDF Store Benchmark
6.1. Experimental Setup
6.2. Benchmark Results with ICOS CP Metadata
6.2.1. Query Performance
6.2.2. Query Correctness
6.3. Benchmark Results with Geographica Datasets
7. Discussion
Listing 1. Query syntax of Q23 in the first scenario in RDF4J, GeoSPARQL-Jena, Virtuoso, and GraphDB (without indexing). |
PREFIX geo: <http://www.opengis.net/ont/geosparql#> PREFIX geof: <http://www.opengis.net/def/function/geosparql/> PREFIX sf: <http://www.opengis.net/ont/sf#> SELECT ?geom1 ?geom2 WHERE { ?geom1 a sf:LineString; geo:asWKT ?wkt1. ?geom2 a sf:Polygon; geo:asWKT ?wkt2. FILTER(geof:sfWithin(?wkt1,?wkt2)).} |
Listing 2. Query syntax of Q23 in the first scenario in Stardog. |
PREFIX geo: <http://www.opengis.net/ont/geosparql#> PREFIX geof: <http://www.opengis.net/def/function/geosparql/> PREFIX sf: <http://www.opengis.net/ont/sf#> SELECT ?geom1 ?geom2 WHERE { ?geom1 a sf:LineString. ?geom2 a sf:Polygon. FILTER(geof:relate(?geom1,?geom2,geo:within)).} |
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Van den Brink, L.; Janssen, P.; Quak, W.; Stoter, J. Towards a high level of semantic harmonisation in the geospatial domain. Comput. Environ. Urban Syst. 2017, 62, 233–242. [Google Scholar] [CrossRef]
- INSPIRE. Available online: https://inspire.ec.europa.eu/ (accessed on 2 December 2018).
- Schade, S.; Smits, P. Why linked data should not lead to next generation SDI. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 2894–2897. [Google Scholar]
- Parsons, E. If You Can’t Link to it… Does it Exist? Available online: https://www.edparsons.com/2017/09/cant-link-exist/ (accessed on 24 April 2019).
- Janowicz, K.; Scheider, S.; Pehle, T.; Hart, G. Geospatial semantics and linked spatiotemporal data–Past, present, and future. Semant. Web 2012, 3, 321–332. [Google Scholar]
- Vancauwenberghe, G.; Valeckaite, K.; Van Loenen, B.; Donker, F.W. Assessing the Openness of Spatial Data Infrastructures (SDI): Towards a Map of Open SDI. IJSDIR 2018, 13, 88–100. [Google Scholar]
- Lutz, M.; Sprado, J.; Klien, E.; Schubert, C.; Christ, I. Overcoming semantic heterogeneity in spatial data infrastructures. Comput. Geosci. 2009, 35, 739–752. [Google Scholar] [CrossRef]
- EuroSDR. EuroSDR Annual Report 2018. Available online: http://www.eurosdr.net/sites/default/files/images/inline/eurosdr_annual_report_2018.pdf (accessed on 12 June 2019).
- AGILE 2018 Workshop ‘SDI Research and Strategies towards 2030’. Available online: https://kcopendata.eu/sdi2030/ (accessed on 25 July 2018).
- W3C. Resource Description Framework (RDF). Available online: https://www.w3.org/RDF/ (accessed on 6 January 2018).
- W3C. SPARQL Query Language for RDF. Available online: https://www.w3.org/TR/rdf-sparql-query/ (accessed on 20 March 2019).
- Perry, M.; Herring, J. OGC GeoSPARQL-A Geographic Query Language for RDF Data. Technical report, Open Geospatial Consortium, 2012. Available online: http://www.opengeospatial.org/standards/geosparql (accessed on 1 May 2019).
- ICOS Carbon Portal. Available online: https://www.ICOS CP.eu/ (accessed on 7 January 2019).
- Garbis, G.; Kyzirakos, K.; Koubarakis, M. Geographica: A benchmark for geospatial RDF stores (long version). In Proceedings of the International Semantic Web Conference, Sydney, NSW, Australia, 21–25 October 2013; pp. 343–359. [Google Scholar]
- World Wide Web Consortium (W3C). W3C Semantic Web Activity. Available online: https://www.w3.org/2001/sw/ (accessed on 25 July 2017).
- Kuhn, W.; Kauppinen, T.; Janowicz, K. Linked data-A paradigm shift for geographic information science. In Proceedings of the International Conference on Geographic Information Science, Vienna, Austria, 24–26 September 2014; pp. 173–186. [Google Scholar]
- Huang, W.; Harrie, L. Towards knowledge-based geovisualisation using Semantic Web technologies: A knowledge representation approach coupling ontologies and rules. Int. J. Digit. Earth 2019. [Google Scholar] [CrossRef]
- INSPIRE. Linking INSPIRE Data: Draft Guidelines and Pilots. Available online: https://inspire.ec.europa.eu/news/linking-inspire-data-draft-guidelines-and-pilots (accessed on 20 December 2018).
- INSPIRE. Guidelines for the Encoding of Spatial Data. Available online: https://inspire.ec.europa.eu/documents/Data_Specifications/D2.7_v3.3rc3.pdf (accessed on 28 April 2019).
- Regalia, B.; Janowicz, K.; Mai, G.; Varanka, D.; Usery, E.L. GNIS-LD: Serving and Visualizing the Geographic Names Information System Gazetteer as Linked Data. In Proceedings of the European Semantic Web Conference, Heraklion, Crete, Greece, 3–7 June 2018; pp. 528–540. [Google Scholar]
- Goodwin, J.; Dolbear, C.; Hart, G. Geographical linked data: The administrative geography of great britain on the semantic web. Trans. Gis 2008, 12, 19–30. [Google Scholar] [CrossRef]
- Folmer, E.; Beek, W.; Rietveld, L. Linked Data Viewing as part of the Spatial Data Platform of the Future. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 49–52. [Google Scholar] [CrossRef]
- Hietanen, E.; Lehto, L.; Latvala, P. Providing Geographic Datasets as Linked Data in SDI. Isprs-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 583–586. [Google Scholar] [CrossRef]
- Shi, L.; Sukhobok, D.; Nikolov, N.; Roman, D. Norwegian State of Estate Report as Linked Open Data. In Proceedings of the OTM Confederated International Conferences on the Move to Meaningful Internet Systems, Rhodes, Greece, 23–27 October 2017; pp. 445–462. [Google Scholar]
- Ronzhin, S.; Folmer, E.; Mellum, R.; von Brasch, T.E.; Martin, E.; Romero, E.L.; Kytö, S.; Hietanen, E.; Latvala, P. Next Generation of Spatial Data Infrastructure: Lessons from Linked Data implementations across Europe. Report of Open ELS Project. Available online: https://openels.eu/wp-content/uploads/2019/04/V2_Next_Generation_SDI_Lessons-from-LD-implementations-across-Europe_1.pdf (accessed on 20 May 2019).
- Usery, E.L.; Varanka, D. Design and development of linked data from the national map. Semant. Web 2012, 3, 371–384. [Google Scholar]
- Cheatham, M.; Krisnadhi, A.; Amini, R.; Hitzler, P.; Janowicz, K.; Shepherd, A.; Narock, T.; Jones, M.; Ji, P. The GeoLink knowledge graph. Big Earth Data 2018, 2, 131–143. [Google Scholar] [CrossRef]
- Stadler, C.; Lehmann, J.; Höffner, K.; Auer, S. Linkedgeodata: A core for a web of spatial open data. Semant. Web 2012, 3, 333–354. [Google Scholar]
- Van den Brink, L.; Barnaghi, P.; Tandy, J.; Atemezing, G.; Atkinson, R.; Cochrane, B.; Fathy, Y.; Castro, R.G.; Haller, A.; Harth, A. Best Practices for Publishing, Retrieving, and Using Spatial Data on the Web. Semant. Web 2019, 10, 95–114. [Google Scholar] [CrossRef]
- Narock, T.; Shepherd, A. Semantics all the way down: The Semantic Web and open science in big earth data. Big Earth Data 2017, 1, 159–172. [Google Scholar] [CrossRef]
- Hofer, B.; Mäs, S.; Brauner, J.; Bernard, L. Towards a knowledge base to support geoprocessing workflow development. Int. J. Geogr. Inf. Sci. 2016, 31, 694–716. [Google Scholar] [CrossRef]
- Keßler, C.; Raubal, M.; Wosniok, C. Semantic rules for context-aware geographical information retrieval. In Proceedings of the European Conference on Smart Sensing and Context, Guildford, UK, 16–18 September 2009; pp. 77–92. [Google Scholar]
- Wiemann, S.; Bernard, L. Spatial data fusion in spatial data infrastructures using linked data. Int. J. Geogr. Inf. Sci. 2016, 30, 613–636. [Google Scholar] [CrossRef]
- Huang, W.; Mansourian, A.; Abdolmajidi, E.; Xu, H.; Harrie, L. Synchronising geometric representations for map mashups using relative positioning and Linked Data. Int. J. Geogr. Inf. Sci. 2018, 32, 1117–1137. [Google Scholar] [CrossRef]
- Guo, Y.; Pan, Z.; Heflin, J. LUBM: A benchmark for OWL knowledge base systems. Web Semant. Sci. Serv. Agents World Wide Web 2005, 3, 158–182. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Hornung, T.; Lausen, G.; Pinkel, C. SP^ 2Bench: A SPARQL performance benchmark. In Proceedings of the 2009 IEEE 25th International Conference on Data Engineering, Shanghai, China, 29 March–2 April 2009; pp. 222–233. [Google Scholar]
- Bizer, C.; Schultz, A. The berlin sparql benchmark. Int. J. Semant. Web Inf. Syst. 2009, 5, 1–24. [Google Scholar] [CrossRef]
- Morsey, M.; Lehmann, J.; Auer, S.; Ngomo, A.-C.N. DBpedia SPARQL benchmark–performance assessment with real queries on real data. In Proceedings of the International Semantic Web Conference, Bonn, Germany, 23–27 October 2011; pp. 454–469. [Google Scholar]
- Duan, S.; Kementsietsidis, A.; Srinivas, K.; Udrea, O. Apples and oranges: A comparison of RDF benchmarks and real RDF datasets. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, Athens, Greece, 12–16 June 2011; pp. 145–156. [Google Scholar]
- Perry, M.; Sheth, A.P.; Hakimpour, F.; Jain, P. Supporting complex thematic, spatial and temporal queries over semantic web data. In Proceedings of the International Conference on GeoSpatial Sematics, Mexico City, Mexico, 29–30 November 2007; pp. 228–246. [Google Scholar]
- Papadimitriou, F. The algorithmic complexity of landscapes. Landscape Res. 2012, 37, 591–611. [Google Scholar] [CrossRef]
- Kolas, D. A Benchmark for Spatial Semantic Web Systems. In Proceedings of the International Workshop on Scalable Semantic Web Knowledge Base Systems, Karlsruhe, Germany, 26–30 October 2008. [Google Scholar]
- Battle, R.; Kolas, D. Enabling the geospatial semantic web with parliament and geosparql. Semant. Web 2012, 3, 355–370. [Google Scholar]
- Athanasiou, S.; Bezati, L.; Giannopoulos, G.; Patroumpas, K.; Skoutas, D. GeoKnow– Making the Web an Exploratory for Geospatial Knowledge: Deliverable 2.1.1 Market and Research Overview. Available online: http://svn.aksw.org/projects/GeoKnow/Public/D2.1.1_Market_and_Research_Overview.pdf (accessed on 30 September 2018).
- Bellini, P.; Nesi, P. Performance assessment of RDF graph databases for smart city services. J. Vis. Lang. Comput. 2018, 45, 24–38. [Google Scholar] [CrossRef]
- FORCE 11. Guiding Principles for Findable, Accessible, Interoperable and Re-Usable Data Publishing Version B1.0. Available online: https://www.force11.org/fairprinciples (accessed on 5 March 2019).
- Bechhofer, S.; Buchan, I.; De Roure, D.; Missier, P.; Ainsworth, J.; Bhagat, J.; Couch, P.; Cruickshank, D.; Delderfield, M.; Dunlop, I. Why linked data is not enough for scientists. Future Gener. Comput. Syst. 2013, 29, 599–611. [Google Scholar] [CrossRef] [Green Version]
- Abam, M.A.; De Berg, M.; Hachenberger, P.; Zarei, A. Streaming algorithms for line simplification. Discret. Comput. Geom. 2010, 43, 497–515. [Google Scholar] [CrossRef]
- W3C. PROV-O: The PROV Ontology. W3C Recommendation. Available online: https://www.w3.org/TR/prov-o/ (accessed on 28 April 2019).
- W3C. The Organization Ontology. W3C Recommendation. Available online: https://www.w3.org/TR/vocab-org/ (accessed on 28 April 2019).
- Mirzov, O.; Huang, W.; Raza, S.A. ICOS CP metadata used for RDF store benchmarking. Res. Data. 2019. [Google Scholar] [CrossRef]
- Herring, J. OpenGIS Implementation Standard for Geographic Information-Simple feature access-Part 1: Common architecture. OGC Doc. 2011, 4, 122–127. [Google Scholar]
Operation | Query Description | |
---|---|---|
Q1 | Boundary | Construct boundary for each polygon |
Q2 | Envelope | Construct envelope for each polygon |
Q3 | Convex Hull | Construct convex hull for each polygon |
Q4 | Buffer | Construct buffer for each line string (polyline) |
Q5 | Buffer | Construct buffer for each polygon |
Q7 | Equals | Find all line strings that are spatially equal to a given line string |
Q8 | Equals | Find all polygons that are spatially equal to a given polygon |
Q9 | Intersect | Find all line strings that intersect with a given Polygon |
Q10 | Intersect | Find all polygons that intersect with a given polygon |
Q11 | Overlaps | Find all polygons that overlap a given polygon |
Q12 | Crosses | Find all line strings that cross a given line string |
Q13 | Within Polygon | Find all points that are spatially within a given polygon |
Q15 | Near a Point | Find all points that are within a fixed distance to a given point |
Q16 | Disjoint | Find all points that are disjoint from a given polygon |
Q17 | Disjoint | Find all line strings that are disjoint from a given polygon |
Q18 | Equals | Find point-to-point equality among all the points |
Q19 | Intersects | Find all points and lines that intersect with each other |
Q20 | Intersects | Find all points and polygons that intersect with each other |
Q21 | Intersects | Find all line strings and polygons that intersect with each other |
Q22 | Within | Find all points and polygons where the point lies inside the polygon |
Q23 | Within | Find all line strings, polygons where the line string lies inside the polygon |
Q24 | Within | Find all pairs of polygons where one polygon is within the other |
Q25 | Crosses | Find all line strings, polygons where the line string crosses the polygon |
Q26 | Touches | Find all pairs of polygons where the polygons touch each other |
Q27 | Overlaps | Find all pairs of polygons where the polygons overlap each other |
RDF4J | GeoSPARQL-Jena | Virtuoso | Stardog | GraphDB | |
---|---|---|---|---|---|
Storage | Native | Native | RDBMS | Native | Native |
Geometry serialization | WKT | WKT, GML | WKT | WKT | WKT, GML |
GeoSPARQL-compliance 1 | Full | Full | Full | Partly | Full |
Use of spatial index | Optional 2 | Optional | Must | Must | Optional |
Spatial index technique | Lucene Spatial | Custom | R-tree | Lucene Spatial | Lucene Spatial |
Supported SRS | WGS84 | Geographic and project SRSs | WGS84 | WGS84 | WGS84 |
RDF4J | GeoSPARQL-Jena | Virtuoso | Stardog | GraphDB | |
---|---|---|---|---|---|
Loading time | 62.4 s | 88.0 s | 94.5 s | 134.1 s | 154.1 s |
Query Time (ms) | RDF4J | GeoSPARQL-Jena | Virtuoso | Stardog | GraphDB | |||
---|---|---|---|---|---|---|---|---|
JDBC | RDF4J | SNARL | RDF4J | Indexed | Non-Indexed | |||
Q1 | 1.70 | 4.04 | 3.76 | 7.37 | 1.51 | |||
Q2 | 1.27 | 2.62 | 2.14 | 2.14 | 1.15 | |||
Q3 | 1.44 | 6.85 | 4.29 | 5.02 | 1.19 | |||
Q4 | 1.45 | 100.93 | 944.95 | 979.93 | 1.12 | |||
Q5 | 1.29 | 3.68 | 64.98 | 70.41 | 2.51 | |||
Q7 | 21.48 | 12.84 | 53.11 | 56.62 | 142.72 | 33.58 | 3.57 | 5.83 |
Q8 | 7.13 | 4.34 | 8.97 | 10.20 | 11.93 | 4.23 | 13.13 | 2.58 |
Q9 | 1.93 | 4.83 | 21.02 | 22.80 | 10.19 | 5.20 | 5.57 | 19.32 |
Q10 | 1.10 | 3.68 | 10.13 | 11.71 | 11.90 | 4.02 | 4.27 | 2.53 |
Q11 | 1.20 | 3.39 | 9.39 | 12.54 | 9.73 | 2.80 | ||
Q12 | 1.19 | 3.64 | 55.17 | 47.79 | 2.83 | 2.95 | ||
Q13 | 2.54 | 5.04 | 1.85 | 4.05 | 10.05 | 4.49 | 4.03 | 7.17 |
Q15 | 2.35 | 20.20 | 2.10 | 4.80 | 24.57 | 3.30 | 1.78 | |
Q16 | 1.47 | 2.51 | 1.78 | 4.63 | 8.96 | 3.39 | 2.83 | 5.31 |
Q17 | 1.37 | 1.87 | 28.15 | 26.82 | 10.80 | 3.73 | 2.34 | 2.24 |
Q18 | 136.81 | 71.19 | 39.92 | 45.84 | 280.10 | 196.99 | 31.01 | 9.33 |
Q19 | 2569.42 | 454.32 | 776.08 | 666.98 | 5786.66 | 5363.58 | 4.55 | 29.82 |
Q20 | 1.75 | 7.40 | 1536.15 | 1541.63 | 621.66 | 583.33 | 19.10 | 3.61 |
Q21 | 1.51 | 2.20 | 47.86 | 45.06 | 10.95 | 4.17 | 14.20 | 3.57 |
Q22 | 1.25 | 10.13 | 759.84 | 783.62 | 11.27 | 6.21 | 14.97 | 11.86 |
Q23 | 422.94 | 3.57 | 277.79 | 279.90 | 1605.72 | 1499.08 | 3.58 | 3.81 |
Q24 | 76.92 | 2.80 | 111.08 | 90.40 | 211.97 | 226.99 | 18.05 | 5.24 |
Q25 | 2.09 | 1.73 | 42.27 | 32.47 | 6.93 | 5.29 | ||
Q26 | 719.31 | 165.46 | 619.50 | 629.43 | 19.11 | 23.49 | ||
Q27 | 2.19 | 2.62 | 58.81 | 52.85 | 5.34 | 11.43 |
RDF4J | GeoSPARQL-Jena | Virtuoso | Stardog | GraphDB | |
---|---|---|---|---|---|
Loading time | 48.6 s | 89.6 s | 620.0 s | 4.6 h | 89.7 s |
Query Time (s) | RDF4J | GeoSPARQL-Jena | Virtuoso | Stardog | GraphDB | |||
---|---|---|---|---|---|---|---|---|
JDBC | RDF4J | SNARL | RDF4J | Indexed | Non-Indexed | |||
Q1 | 0.015 | 0.011 | 0.020 | 0.088 | 0.009 | |||
Q2 | 0.011 | 0.003 | 0.023 | 0.016 | 0.002 | |||
Q3 | 0.011 | 0.005 | 0.059 | 0.074 | 0.009 | |||
Q4 | 0.006 | 0.079 | 0.043 | 0.061 | 0.005 | |||
Q5 | 0.003 | 0.003 | 0.203 | 0.250 | 0.003 | |||
Q7 | 0.527 | 0.055 | 0.120 | 0.130 | 0.515 | 0.533 | 0.079 | 2.515 |
Q8 | 0.482 | 0.139 | 0.148 | 0.156 | 0.178 | 0.140 | 0.139 | 5.536 |
Q9 | 0.013 | 0.005 | 0.022 | 0.035 | 0.021 | 0.017 | 17.442 | 0.046 |
Q10 | 0.776 | 0.012 | 0.120 | 0.181 | 0.095 | 0.083 | 0.125 | 0.867 |
Q11 | 0.685 | 0.014 | 0.077 | 0.125 | 0.404 | 0.034 | ||
Q12 | 0.009 | 0.005 | 0.094 | 0.116 | 1.880 | 0.076 | ||
Q13 | 0.093 | 0.003 | 0.052 | 0.054 | 0.786 | 0.776 | 13.163 | 0.026 |
Q15 | 0.222 | 4.529 | 0.119 | 0.147 | 0.921 | 0.760 | 1.645 | |
Q16 | 0.003 | 0.384 | 0.006 | 0.009 | 0.013 | 0.009 | 124.135 | 0.003 |
Q17 | 0.003 | 0.002 | 0.027 | 0.030 | 0.008 | 0.007 | 148.334 | 0.002 |
Q18 | 0.027 | 0.060 | 0.060 | 0.009 | 0.014 | 0.008 | 0.010 | 1.491 |
Q19 | >1 h | 544.082 | 938.553 | 932.699 | >1 h | >1 h | 1026.021 | >1 h |
Q20 | 9.031 | 0.021 | 2.677 | 2.679 | 2416.730 | 2439.824 | 1.013 | 9.887 |
Q21 | 3.985 | 0.005 | 1.715 | 1.673 | 4.174 | 4.471 | 2.969 | 3.573 |
Q22 | 8.569 | 0.003 | 2.071 | 2.130 | 0.380 | 0.386 | 0.441 | 9.104 |
Q23 | 5.940 | 0.004 | 2.370 | 2.463 | 4.681 | 4.857 | 1.677 | 3.382 |
Q24 | 7.875 | 0.007 | 2.358 | 2.529 | 0.129 | 0.113 | 0.099 | 3.304 |
Q25 | 3.940 | 0.017 | 6.531 | 6.596 | 0.612 | 62.865 | ||
Q26 | 0.040 | 0.033 | 3.460 | 3.758 | 0.531 | 7.431 | ||
Q27 | 18.274 | 0.111 | 1.059 | 0.644 | 0.077 | 17.337 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Raza, S.A.; Mirzov, O.; Harrie, L. Assessment and Benchmarking of Spatially Enabled RDF Stores for the Next Generation of Spatial Data Infrastructure. ISPRS Int. J. Geo-Inf. 2019, 8, 310. https://doi.org/10.3390/ijgi8070310
Huang W, Raza SA, Mirzov O, Harrie L. Assessment and Benchmarking of Spatially Enabled RDF Stores for the Next Generation of Spatial Data Infrastructure. ISPRS International Journal of Geo-Information. 2019; 8(7):310. https://doi.org/10.3390/ijgi8070310
Chicago/Turabian StyleHuang, Weiming, Syed Amir Raza, Oleg Mirzov, and Lars Harrie. 2019. "Assessment and Benchmarking of Spatially Enabled RDF Stores for the Next Generation of Spatial Data Infrastructure" ISPRS International Journal of Geo-Information 8, no. 7: 310. https://doi.org/10.3390/ijgi8070310
APA StyleHuang, W., Raza, S. A., Mirzov, O., & Harrie, L. (2019). Assessment and Benchmarking of Spatially Enabled RDF Stores for the Next Generation of Spatial Data Infrastructure. ISPRS International Journal of Geo-Information, 8(7), 310. https://doi.org/10.3390/ijgi8070310