Identifying Alternative Wetting and Drying (AWD) Adoption in the Vietnamese Mekong River Delta: A Change Detection Approach
Abstract
:1. Introduction
1.1. Environmental Setting
1.2. History of AWD
1.3. Change Detection Approach
2. Materials and Methods
2.1. Remote Sensing Data Acquisition
2.2. Pre-processing
2.3. Parameterization
2.4. Wetness Index Calculation
2.5. Change Detection
2.6. Classification System
3. Results
3.1. Wetness Index Correlation
3.2. AWD Adoption Likelihood
4. Discussion
4.1. Limitations of the Change Detection Approach
4.2. Challenges of the Change Detection Method
4.3. Potential of the Change Detection Approach
5. Conclusion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lampayan, R.M.; Rejesus, R.M.; Singleton, G.R.; Bouman, B.A. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crop. Res. 2015, 170, 95–108. [Google Scholar] [CrossRef]
- Quynh, V.D.; Sander, B.O. Applying and Scaling up Alternate Wetting and Drying Technology for Paddy Rice in the Mekong River Delta. Available online: file:///C:/Users/mdpi/Downloads/Can%20Tho%20Workshop%20Report%20FINAL.pdf (accessed on 15 June 2019).
- Rejesus, R.M.; Palis, F.G.; Rodriguez, D.G.P.; Lampayan, R.M.; Bouman, B.A. Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines. Food Policy 2011, 36, 280–288. [Google Scholar] [CrossRef]
- Mendoza, T.L.; Singleton, G. Technologies meet farmers, Rice Today 2011. Available online: https://www.scribd.com/user/30672931/Rice-Today (accessed on 15 June 2019).
- Hassan, Q.K.; Bourque, C.P.A. Development of a New Wetness Index Based on RADARSAT-1 ScanSAR Data. In Remote Sensing for Archaeology and Cultural Landscapes; Springer Science and Business Media LLC: Medford, MA, USA, 2015; pp. 301–314. [Google Scholar]
- Wagner, W.; Sabel, D.; Doubkova, M.; Bartsch, A.; Pathe, C. The Potential of Sentinel-1 for Monitoring Soil Moisture with a High Spatial Resolution at Global Scale. In Proceedings of the Earth Observation and Water Cycle Science, Frascati, Italy, 18–20 November 2009. [Google Scholar]
- Wang, Y.; Ruan, R.; She, Y.; Yan, M. Extraction of Water Information based on RADARSAT SAR and Landsat ETM+. Procedia Environ. Sci. 2011, 10, 2301–2306. [Google Scholar] [CrossRef] [Green Version]
- Penny, D. The Mekong at Climatic Crossroads: Lessons from the Geological Past. Ambio 2008, 37, 164–169. [Google Scholar] [CrossRef]
- Hung, N.N.; Delgado, J.M.; Tri, V.K.; Hung, L.M.; Merz, B.; Bárdossy, A.; Apel, H. Floodplain hydrology of the Mekong delta, Vietnam. Hydrol. Process. 2012, 26, 674–686. [Google Scholar] [CrossRef]
- Hoa, L.T.V.; Shigeko, H.; Nhan, N.H.; Cong, T.T. Infrastructure effects on floods in the Mekong River Delta in Vietnam. Hydrol. Process. 2008, 22, 1359–1372. [Google Scholar] [CrossRef]
- Keskinen, M.; Chinvanno, S.; Kummu, M.; Nuorteva, P.; Snidvongs, A.; Varis, O.; Västilä, K. Climate change and water resources in the lower Mekong River Basin: Putting adaptation into the context. J. Water Clim. Chang. 2010, 1, 103–117. [Google Scholar] [CrossRef]
- Wade, L.; George, T.; Ladha, J.; Singh, U.; Bhuiyan, S.; Pandey, S. Opportunities to manipulate nutrient-by-water interactions in rainfed lowland rice systems. Field Crop. Res. 1998, 56, 93–112. [Google Scholar] [CrossRef]
- Natural Resource Management for Poverty Reduction and Environmental Sustainability in Fragile Rice-based Systems 2009. Available online: https://www.slideshare.net/consortiumforunfavorablericeenvironments/irri-limited-proceedings-progress-in-natural-resource-management-for-poverty-reduction-and-environmental-sustainability-in-fragile-ricebased-systems (accessed on 15 June 2019).
- Bell, R.W.; Seng, V. Rainfed lowland rice-growing soils of Cambodia, Laos, and North-east Thailand. In Proceedings of the Water in Agriculture ACIAR Proceedings No. 116e, Phnom Penh, Cambodia, 25–28 November 2004; pp. 161–173. [Google Scholar]
- Lakhankar, T.; Ghedira, H.; Azar, A.; Khanbilvardi, R. Effect of sub-pixel variability and land-cover on soil moisture retrieval from RADARSAT-1 data. IEEE MicroRad 2006, 187–192. [Google Scholar]
- Miranda, N.; Meadows, P.J.; Type, D.; Note, T. Radiometric Calibration of S-1 Level-1 Products Generated by the S-1 IPF; European Space Agency: Paris, France, 2015; pp. 1–13. [Google Scholar]
- Moran, M.S.; Peters-Lidard, C.D.; Watts, J.M.; McElroy, S. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Can. J. Remote Sens. 2004, 30, 805–826. [Google Scholar] [CrossRef] [Green Version]
- Hornacek, M.; Wagner, W.; Sabel, D.; Truong, H.L.; Snoeij, P.; Hahmann, T.; Diedrich, E.; Doubkova, M. Potential for High Resolution Systematic Global Surface Soil Moisture Retrieval via Change Detection Using Sentinel-1. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1303–1311. [Google Scholar] [CrossRef] [Green Version]
- Padhye, S.A.; Rege, P.P. Feature extraction from microwave data using backscatter coefficient. In Proceedings of the International Conference on Industrial Instrumentation and Control (ICIC), Pune, India, 28–30 May 2015; pp. 789–794. [Google Scholar]
- Barrett, B.; Petropoulos, G. Satellite Remote Sensing of Surface Soil Moisture. In Remote Sens. Energy Fluxes Soil Moisture Content, 1st ed.; Taylor & Francis: Abingdon, UK, 2013. [Google Scholar]
- Inoue, Y.; Sakaiya, E.; Wang, C. Capability of C-band backscattering coefficients from high-resolution satellite SAR sensors to assess biophysical variables in paddy rice. Remote Sens. Environ. 2014, 140, 257–266. [Google Scholar] [CrossRef]
- Liew, S.C.; Kam, S.P.; Tuong, T.P.; Chen, P.; Minh, V.Q.; Balababa, L.; Lim, H. Application of multitemporal ERS synthetic aperture radar in delineating rice cropping systems in the Mekong river delta. Int. Geosci. Remote Sens. Symp. 1997, 2, 1084–1086. [Google Scholar] [CrossRef]
- Guan, X.; Huang, C.; Liu, G.; Meng, X.; Liu, Q. Mapping Rice Cropping Systems in Vietnam Using an NDVI-Based Time-Series Similarity Measurement Based on DTW Distance. Remote Sens. 2016, 8, 19. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; De Bie, C.A.J.M.; Ali, A.; Smaling, E.M.A.; Chu, T.H. Mapping the irrigated rice cropping patterns of the Mekong delta, Vietnam, through hyper-temporal SPOT NDVI image analysis. Int. J. Remote Sens. 2012, 33, 415–434. [Google Scholar] [CrossRef]
- Xiao, D.; Feng, J.; Wang, N.; Luo, X.; Hu, Y. Integrated soil moisture and water depth sensor for paddy fields. Comput. Electron. Agric. 2013, 98, 214–221. [Google Scholar] [CrossRef]
- Montzka, C.; Moradkhani, H.; Weihermüller, L.; Franssen, H.J.H.; Canty, M.; Vereecken, H. Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter. J. Hydrol. 2011, 399, 410–421. [Google Scholar] [CrossRef]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation; Wiley: Hoboken, NJ, USA, 2008; Volume 3, ISBN 978-0-470-05245-7. [Google Scholar]
Acquisition Dates 1 |
---|
5 January 2017 |
11 January 2017 |
17 January 2017 |
23 January 2017 |
29 January 2017 |
4 February 2017 |
10 February 2017 |
22 February 2017 |
28 February 2017 |
23 March 2017 |
Degree of Adoption by Season | An Giang | Dong Thap | Bac Lieu | |||
---|---|---|---|---|---|---|
N | Mean/SP 2 | N | Mean/SP | N | Mean/SP | |
Winter-Spring | 96 | 0.68 | 63 | 0.68 | 44 | 0.73 |
Summer-Autumn | 96 | 0.66 | 63 | 0.68 | 44 | 0.04 |
Autumn-Winter | 95 | 0.67 | 46 | 0.63 | 2 | 0.25 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lovell, R.J. Identifying Alternative Wetting and Drying (AWD) Adoption in the Vietnamese Mekong River Delta: A Change Detection Approach. ISPRS Int. J. Geo-Inf. 2019, 8, 312. https://doi.org/10.3390/ijgi8070312
Lovell RJ. Identifying Alternative Wetting and Drying (AWD) Adoption in the Vietnamese Mekong River Delta: A Change Detection Approach. ISPRS International Journal of Geo-Information. 2019; 8(7):312. https://doi.org/10.3390/ijgi8070312
Chicago/Turabian StyleLovell, Robin J. 2019. "Identifying Alternative Wetting and Drying (AWD) Adoption in the Vietnamese Mekong River Delta: A Change Detection Approach" ISPRS International Journal of Geo-Information 8, no. 7: 312. https://doi.org/10.3390/ijgi8070312
APA StyleLovell, R. J. (2019). Identifying Alternative Wetting and Drying (AWD) Adoption in the Vietnamese Mekong River Delta: A Change Detection Approach. ISPRS International Journal of Geo-Information, 8(7), 312. https://doi.org/10.3390/ijgi8070312