A Sightseeing Support System Using Augmented Reality and Pictograms within Urban Tourist Areas in Japan
Abstract
:1. Introduction
2. Related Work
3. System Design
3.1. System Characteristics
3.2. Usefulness of the System
3.3. Target Information Terminals and Operating Environment
3.4. Overview of the System Design
3.4.1. Mobile Application
3.4.2. Location-Based AR
3.4.3. Object-Recognition AR
4. System Development
4.1. The Front End of the System
4.1.1. User Registration Function for the System
4.1.2. Function to Switch the Displayed Markers for Each Sightseeing Course When Using Location-Based AR
4.1.3. Function to Change Displayed Pictograms When Using Location-Based AR
4.1.4. Function to Indicate the Display Range of Images When Using Location-Based AR
4.1.5. Optional Function to Switch between Location-Based AR and Object-Recognition AR
4.1.6. Function to Change Recognition Target When Using Object-Recognition AR
4.2. System Back End
4.2.1. Update of the Distance Information and Location Information Using GPS
4.2.2. Changing the Marker Height Level and Displayed Pictograms According to the Updated Distance Information
4.2.3. Users’ Information Management Using Firebase
4.2.4. Data Management Using Android Studio
4.2.5. Recognition Target Management by Means of Wikitude Target Manager
4.3. System Interface
4.3.1. Interface of Location-Based AR Screen
4.3.2. Interface of Object-Recognition AR Screen
4.3.3. Website Interface
5. Operation
5.1. Selection of the Operation Target Area
5.2. Operation Overview
5.2.1. Operation Period
5.2.2. Operation Results
6. Evaluation
6.1. Evaluation Based on a Web Questionnaire Survey
6.1.1. Overview of the Web Questionnaire Survey
6.1.2. Evaluation Concerning the Compatibility with the Information Obtainment Method
6.1.3. Evaluation Concerning the Usage of the System
6.1.4. Evaluation Concerning the Functions of the System
6.2. Evaluation Based on the Mobile Application Analysis
6.3. Extraction of Improvement Measures
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dinis, M.G.F.; Costa, C.M.M.; Rocha Pacheco, O.M. Composite Indicators for Measuring the Online Search Interest by a Tourist Destination. In Big Data and Innovation in Tourism, Travel, and Hospitality: Managerial Approaches, Techniques, and Applications; Sigala, M., Rahimi, R., Thelwall, M., Eds.; Springer: Berlin, Germany, 2019; pp. 1–19. [Google Scholar]
- Wise, N.; Heidari, H. Developing Smart Tourism Destinations with the Internet of Things. In Big Data and Innovation in Tourism, Travel, and Hospitality: Managerial Approaches, Techniques, and Applications; Sigala, M., Rahimi, R., Thelwall, M., Eds.; Springer: Berlin, Germany, 2019; pp. 21–29. [Google Scholar]
- Kounoike, K. Available online: https://kakakumag.com/pc-smartphone/?id=9609 (accessed on 8 January 2019).
- GrapeCity. Available online: https://wikitude.grapecity.com/topics/interviews-harbor-solutions (accessed on 8 January 2019).
- Fujita, S.; Yamamoto, K. Development of Dynamic Real-Time Navigation System. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 116–130. [Google Scholar] [CrossRef]
- Zhou, J.; Yamamoto, K. Development of the System to Support Tourists’ Excursion Behavior using Augmented Reality. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 197–209. [Google Scholar] [CrossRef]
- Yamamoto, K. Navigation System for Foreign Tourists in Japan. J. Environ. Sci. Eng. 2018, 10, 521–541. [Google Scholar]
- Abe, S.; Yoshitsugu, N.; Miki, D.; Yamamoto, K. An Information Retrieval System with Language-Barrier-Free Interfaces. J. Inf. Syst. Soc. Jpn. 2019, 14, 57–64. [Google Scholar]
- Rehman, U.; Cao, S. Augmented-Reality-Based Indoor Navigation: A Comparative Analysis of Handheld Devices versus Google Glass. IEEE Trans. Hum.-Mach. Syst. 2017, 47, 140–151. [Google Scholar] [CrossRef]
- Morozumi, S.; Yamazaki, Y.; Chigusa, Y.; Hattori, T. Development of Navigation System for Restaurants Using AR. In Proceedings of the 78th National Convention of Information Processing Society of Japan, Tokyo, Japan, 10–12 March 2016; Volume 2016, pp. 361–362. [Google Scholar]
- Chung, J.; Pagnini, F.; Langer, E. Mindful Navigation for Pedestrians: Improving Engagement with Augmented Reality. Technol. Soc. 2016, 45, 29–33. [Google Scholar] [CrossRef]
- Amirian, P.; Basiri, A. Landmark-Based Pedestrian Navigation Using Augmented Reality and Machine Learning. In Progress in Cartography; Gartner, G., Jobst, M., Huang, H., Eds.; Springer: Berlin, Germany, 2016; pp. 451–465. [Google Scholar]
- Gerstweiler, G.; Vonach, E.; Kaufmann, H. HyMoTrack: A Mobile AR Navigation System for Complex Indoor Environments. Sensors 2016, 16, 17. [Google Scholar] [CrossRef] [PubMed]
- Mata, F.; Claramunt, C.; Juarez, A. An Experimental Virtual Museum Based on Augmented Reality and Navigation. In Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Chicago, IL, USA, 1–4 November 2011; pp. 497–500. [Google Scholar]
- Okada, H.; Yoshimi, T.; Motokurumada, M.; Ota, M.; Yamashita, K. AR Navigation System Obtained Location Information from Maker. In Proceedings of the 2011 Convention of Information Processing Society of Japan-Kansai Branch, Osaka, Japan, 22 September 2011. [Google Scholar]
- Mulloni, A.; Seichter, H.; Schmalstieg, D. Handheld Augmented Reality Indoor Navigation with Activity-Based Instructions. In Proceedings of the 13th International Conference on Human Computer Interaction with Mobile information terminals and Services, Beijing, China, 17–21 September 2011; pp. 211–220. [Google Scholar]
- Möller, A.; Kranz, M.; Huitl, R.; Diewald, S.; Roalter, L. A Mobile Indoor Navigation System Interface Adapted to Vision-Based Localization. In Proceedings of the 11th International Conference on Mobile and Ubiquitous Multimedia, Ulm, Germany, 4–6 December 2012. [Google Scholar] [CrossRef]
- Neges, M.; Koch, C.; König, M.; Abramovici, M. Combining Visual Natural Markers and IMU for Improved AR Based Indoor Navigation. Adv. Eng. Inform. 2017, 31, 18–31. [Google Scholar] [CrossRef]
- Kurihara, K.; Sato, H. Marker-Based Indoor Navigation for Sharing Location Information. In Proceedings of the 2011 Multimedia, Distributed, Cooperative, and Mobile Symposium, Shibata, Nigata, Japan, 9–11 July 2014; pp. 1099–1103. [Google Scholar]
- Wang, C.-S.; Su, W.-T. An Efficient Mobile AR Navigation System Using Polygon Approximation Based Data Acquisition. In Proceedings of the 2018 International Wireless Internet Conference, Taipei, Taiwan, 15–16 October 2018; pp. 215–224. [Google Scholar]
- Zhou, X.; Sun, Z.; Xue, C.; Lin, Y.; Zhang, J. Mobile AR Tourist Attraction Guide System Design Based on Image Recognition and User Behavior. In Proceedings of the 2019 International Conference on Intelligent Human Systems Integration, San Diego, CA, USA, 7–10 February 2019; pp. 858–863. [Google Scholar]
- Fukada, H.; Funaki, T.; Kodama, M.; Miyashita, N.; Ohtsu, S. Proposal of Tourist Information System Using Image Processing-Based Augmented Reality. In Proceedings of the 2011th Special Interest Group on Information Systems (SIG-IS) of Information Processing Society of Japan, Tokyo, Japan, 14–15 March 2011; pp. 1–8. [Google Scholar]
- Han, D.-I.; Jung, T.; Gibson, A. Dublin AR: Implementing Augmented Reality in Tourism. In The Proceedings of the Information and Communication Technologies in Tourism 2014; Springer: Berlin, Germany, 2014; pp. 511–523. [Google Scholar]
- Komoda, S.; Takasu, Y.; Mizuno, S. Smartphone Application for Walking around the Locations of Movie of Local Cinema “Takahama Story”. In Proceedings of the 2011th Special Interest Group on Digital Contents Creation (SIG-DCC) of Information Processing Society of Japan, Tokyo, Japan, 21–22 January 2013; Volume 2013-DCC-3 No.16. [Google Scholar]
- Junga, T.; Chung, N.; Leue, M.C. The Determinants of Recommendations to Use Augmented Reality Technologies: The Case of a Korean Theme Park. Tour. Manag. 2015, 49, 75–86. [Google Scholar] [CrossRef]
- Ma, X.; Sun, J.; Zhang, G.; Ma, M.; Gong, J. Enhanced Expression and Interaction of Paper Tourism Maps Based on Augmented Reality for Emergency Response. In Proceedings of the 2nd International Conference on Big Data and Internet of Things, Beijing, China, 24–26 October 2018; pp. 105–109. [Google Scholar]
- Blanco-Pons, S.; Carrión-Ruiza, B.; Lerma, J.L.; Villaverde, V. Design and Implementation of an Augmented Reality Application for Rock Art Visualization in Cova dels Cavalls (Spain). J. Cult. Herit. 2019. [Google Scholar] [CrossRef]
- Makino, R.; Yamamoto, K. Spatiotemporal Information System Using Mixed Reality for Area-Based Learning and Sightseeing. In Lecture Notes in Geoinformation and Cartography: Computational Urban Planning and Management for Smart Cities; Stan, G., Andrew, A., Chris, P., John, S., Eds.; Springer: Berlin, Germany, 2019; pp. 283–302. [Google Scholar]
- Kusano, K.; Izumi, T.; Nobutani, Y. Proposal of Disaster Information Sharing System Using Pictogram. In Proceedings of the 75th National Convention of Information Processing Society of Japan, Sendai, Miyagi, Japan, 6–8 March 2013; Volume 2013, pp. 802–804. [Google Scholar]
- Kusano, K.; Izumi, T.; Nobutani, Y. Nonlinguistic Disaster Information Sharing System Using Visual Marks. In Transactions on Engineering Technologies; Haeng, K., Kim, M., Amouzegar, A., Sio-long, A., Eds.; Springer: Berlin, Germany, 2015; pp. 273–288. [Google Scholar]
- Sándor, Z. Effects of Weather Related Safety Messages on the Motorway Traffic Parameters. Period. Polytech. Transp. Eng. 2017, 45, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, Y.; Oyakawa, D.; Kiyoki, Y.; Mita, T. An information Providing Method to Express Train Service Situation by Combining Multiple Sign-Logo Images. In Information Modelling and Knowledge Bases XXX; Tatiana, E., Alexander, D., Hannu, J., Bernhard, T., Yasushi, K., Naofumi, Y., Eds.; IOS Press: Amsterdam, The Netherlands, 2019; pp. 384–392. [Google Scholar]
- Kołodziejczak, A. Information as a factor of the Development of Accessible Tourism for People with Disabilities. Quaest. Geogr. 2019, 38, 67–73. [Google Scholar] [CrossRef]
- Foundation for Promoting Personal Mobility and Ecological Transportation. Available online: http://www.ecomo.or.jp/english/index.html (accessed on 8 January 2019).
Age Groups of Users | 10–19 | 20–29 | 30–39 | 40–49 | 50–59 | 60+ | Total |
---|---|---|---|---|---|---|---|
Number of users | 8 | 18 | 2 | 8 | 12 | 1 | 50 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasaki, R.; Yamamoto, K. A Sightseeing Support System Using Augmented Reality and Pictograms within Urban Tourist Areas in Japan. ISPRS Int. J. Geo-Inf. 2019, 8, 381. https://doi.org/10.3390/ijgi8090381
Sasaki R, Yamamoto K. A Sightseeing Support System Using Augmented Reality and Pictograms within Urban Tourist Areas in Japan. ISPRS International Journal of Geo-Information. 2019; 8(9):381. https://doi.org/10.3390/ijgi8090381
Chicago/Turabian StyleSasaki, Ryo, and Kayoko Yamamoto. 2019. "A Sightseeing Support System Using Augmented Reality and Pictograms within Urban Tourist Areas in Japan" ISPRS International Journal of Geo-Information 8, no. 9: 381. https://doi.org/10.3390/ijgi8090381
APA StyleSasaki, R., & Yamamoto, K. (2019). A Sightseeing Support System Using Augmented Reality and Pictograms within Urban Tourist Areas in Japan. ISPRS International Journal of Geo-Information, 8(9), 381. https://doi.org/10.3390/ijgi8090381