UAV-Based Structural Damage Mapping: A Review
Abstract
:1. Introduction
1.1. Structural Damage Mapping with Remote Sensing
1.2. Scope of the Review
2. UAV-Based Damage Mapping
2.1. Scene Reconnaissance and Simple Imaging
2.2. Texture- and Segmentation-Based Methods
2.3. Conventional Classifiers
Processing Level | Publications | Platform | Notes |
---|---|---|---|
Scene reconnaissance/simple imaging | Whang et al., 2007 [22] | Multi-copter |
|
Adams et al., 2014 [29] | |||
Dominici et al., 2012 [30] | |||
Mavroulis et al., 2019 [31] | |||
Nakanishi and Inoue, 2005 [18] | Helicopter | ||
Murphy et al., 2008 [27] | |||
Kochersberger et al., 2014 [28] | |||
Lewis, 2007 [26] | Fixed-wing |
| |
Suzuki et al., 2008 [24] | |||
Bendea et al., 2008 [25] | |||
Hein et al., 2019 [33] | |||
Xu et al., 2014 [34] | |||
Gowravaram et al., 2018 [35] | |||
Texture- and segmentation-based methods; change detection | Fernandez Galarreta et al., 2015 [36] | Multi-copter |
|
Dorafshan et al., 2018 [44] | |||
Chen et al., 2019 [45] | |||
Akbar et al., 2019 [46] | |||
Zeng et al., 2013 [40] | Helicopter | ||
Kakooei and Baleghi, 2017 [47] | Fixed-wing |
| |
Grenzdorffer et al., 2008 [37] | Pictometry 2 | ||
Gerke and Kerle, 2011a [38] |
| ||
Gerke and Kerle, 2011b [39] | |||
Zeng et al., 2013 [40] | |||
Vetrivel et al. 2016 [47] | |||
Tu et al., 2017 [49] 1 | |||
Conventional classifiers | Li et al., 2015 [42] | Multi-copter |
|
Vetrivel et al., 2015b [43] | |||
Vetrivel et al., 2015a [41] | Pictometry | ||
Lucks et al., 2019 [50] | -- 3 | ||
Advanced machine learning/CNN/generative adversarial networks (GAN) | Duarte et al., 2017 [51] | Multi-copter |
|
Dorafshan et al., 2018a [52] | |||
Dorafshan et al., 2018b [53] | |||
Xu et al., 2018 [54] | |||
Vetrivel et al., 2018 [55] | |||
Cusicanqui et al., 2018 |
| ||
Duarte et al., 2018a [56] |
| ||
Duarte et al., 2018b [57] |
| ||
Kerle et al., 2019 [58] |
| ||
Nex et al., 2019a [59] |
| ||
Tsai and Wei, 2019 [60] |
| ||
Xu et al., 2018 [54] | Fixed-wing |
| |
Vetrivel et al., 2018 [55] | Pictometry |
| |
Duarte et al., in press [61] |
| ||
Li et al., 2018 [62] | -- 2 |
| |
Li et al., 2019 [63] | |||
Liang et al., 2019 [64] | Ground-based |
| |
Nex et al., 2019b [65] | Multiple platforms |
| |
Song et al., 2019 [66] | Manned airborne |
| |
Huang et al., 2019 [67] | |||
Duarte et al., 2018 [56] |
2.4. Advanced Machine Learning and the Emergence of CNN
2.5. Levels of Disaster Damage Mapping
2.6. The Special Case of Infrastructure Damage Mapping
3. Damage Product and System Usability
3.1. Damage Detection in Two European Research Projects
3.2. Tests with End Users in Two European Research Projects
3.3. Validation
3.4. Limitations
4. Outlook and New Developments
4.1. Improvements in Machine Learning
4.2. Mapping Autonomy
4.3. Indoor Mapping
4.4. The Age of Drones with Robotic Abilities
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baker, S. San francisco in ruins: The 1906 aerial photographs of george r. Lawrence. Landscape 1989, 30, 9–14. [Google Scholar]
- Kerle, N. Disasters: Risk assessment, management, and post-disaster studies using remote sensing. In Remote Sensing of Water Resources, Disasters, and Urban Studies (Remote Sensing Handbook, 3); Thenkabail, P.S., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 455–481. [Google Scholar]
- Dong, L.G.; Shan, J. A comprehensive review of earthquake-induced building damage detection with remote sensing techniques. ISPRS-J. Photogramm. Remote Sens. 2013, 84, 85–99. [Google Scholar] [CrossRef]
- Belabid, N.; Zhao, F.; Brocca, L.; Huang, Y.B.; Tan, Y.M. Near-real-time flood forecasting based on satellite precipitation products. Remote Sens. 2019, 11, 252. [Google Scholar] [CrossRef] [Green Version]
- Novikov, G.; Trekin, A.; Potapov, G.; Ignatiev, V.; Burnaev, E. Satellite imagery analysis for operational damage assessment in emergency situations. In International Conference on Business Information Systems, Berlin, Germany, 2018; Springer International Publishing: Berlin, Germany, 2008; pp. 347–358. [Google Scholar]
- Kerle, N.; Hoffman, R.R. Collaborative damage mapping for emergency response: The role of cognitive systems engineering. Nat. Hazards Earth Syst. Sci. 2013, 13, 97–113. [Google Scholar] [CrossRef] [Green Version]
- Ghaffarian, S.; Kerle, N.; Filatova, T. Remote sensing-based proxies for urban disaster risk management and resilience: A review. Remote Sens. 2018, 10, 1760. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.H.; Ni, C.F.; Chang, C.P.; Yen, J.Y.; Chuang, R.Y. Coherence difference analysis of sentinel-1 sar interferogram to identify earthquake-iinduced disasters in urban areas. Remote Sens. 2018, 10, 1318. [Google Scholar] [CrossRef] [Green Version]
- Li, L.L.; Liu, X.G.; Chen, Q.H.; Yang, S. Building damage assessment from polsar data using texture parameters of statistical model. Comput. Geosci. 2018, 113, 115–126. [Google Scholar] [CrossRef]
- Gokon, H.; Post, J.; Stein, E.; Martinis, S.; Twele, A.; Muck, M.; Geiss, C.; Koshimura, S.; Matsuoka, M. A method for detecting buildings destroyed by the 2011 tohoku earthquake and tsunami using multitemporal terrasar-x data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1277–1281. [Google Scholar] [CrossRef]
- Bai, Y.B.; Gao, C.; Singh, S.; Koch, M.; Adriano, B.; Mas, E.; Koshimura, S. A framework of rapid regional tsunami damage recognition from post-event terrasar-x imagery using deep neural networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Cooner, A.J.; Shao, Y.; Campbell, J.B. Detection of urban damage using remote sensing and machine learning algorithms: Revisiting the 2010 haiti earthquake. Remote Sens. 2016, 8, 868. [Google Scholar] [CrossRef] [Green Version]
- Ji, M.; Liu, L.; Buchroithner, M. Identifying collapsed buildings using post-earthquake satellite imagery and convolutional neural networks: A case study of the 2010 haiti earthquake. Remote Sens. 2018, 10, 1689. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.Z.; Lu, W.; Li, Z.; Khaitan, P.; Zaytseva, V. Building damage detection in satellite imagery using convolutional neural networks. arXiv 2019, arXiv:1910.06444. [Google Scholar]
- Sublime, J.; Kalinicheva, E. Automatic post-disaster damage mapping using deep-learning techniques for change detection: Case study of the tohoku tsunami. Remote Sens. 2019, 11, 1123. [Google Scholar] [CrossRef] [Green Version]
- Ji, M.; Liu, L.; Du, R.; Buchroithner, M.F. A comparative study of texture and convolutional neural network features for detecting collapsed buildings after earthquakes using pre- and post-event satellite imagery. Remote Sens. 2019, 11, 1202. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Goodman, B.; Patel, N.; Hosfelt, R.; Sajeev, S.; Heim, E.; Doshi, J.; Lucas, K.; Choset, H.; Gaston, M.E. Creating xbd: A dataset for assessing building damage from satellite imagery. In Proceedings of the CVPR Workshops, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Nakanishi, H.; Inoue, K. Study on Intelligent Aero-Robot for Disaster Response; Science Press Beijing: Beijing, China, 2005; Volume 5, pp. 1730–1734. [Google Scholar]
- Miyano, K.; Shinkuma, R.; Mandayam, N.B.; Sato, T.; Oki, E. Utility based scheduling for multi-uav search systems in disaster-hit areas. IEEE Access 2019, 7, 26810–26820. [Google Scholar] [CrossRef]
- Ejaz, W.; Azam, M.A.; Saadat, S.; Iqbal, F.; Hanan, A. Unmanned aerial vehicles enabled iot platform for disaster management. Energies 2019, 12, 2706. [Google Scholar] [CrossRef] [Green Version]
- Kerle, N.; Nex, F.; Duarte, D.; Vetrivel, A. Uav-based structural damage mapping—Results from 6 years of research in two european projects. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, XLII-3/W8, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Whang, S.H.; Kim, D.H.; Kang, M.S.; Cho, K.; Park, S.; Son, W.H. Development of a Flying Robot System for Visual Inspection of Bridges; Ishmii-Int Soc Structural Health Monitoring Intelligent Infrastructure: Winnipeg, MB, Canada, 2007. [Google Scholar]
- Pollefeys, M.; Van Gool, L.; Vergauwen, M.; Verbiest, F.; Cornelis, K.; Tops, J.; Koch, R. Visual modeling with a hand-held camera. Int. J. Comput. Vision 2004, 59, 207–232. [Google Scholar] [CrossRef]
- Suzuki, T.; Miyoshi, D.; Meguro, J.; Amano, Y.; Hashizume, T.; Sato, K.; Takiguchi, J. Real-time hazard map generation using small unmanned aerial vehicle. In Proceedings of the Sice Annual Conference, Tokyo, Japan, 20–22 August 2018; IEEE: New York, NY, USA, 2008; Volumes 1–7, p. 4. [Google Scholar]
- Bendea, H.; Boccardo, P.; Dequal, S.; Giulio Tonolo, F.M.; Marenchino, D.; Piras, M. Low cost uav for post-disaster assessment. In XXIst ISPRS Congress, Beijing, China; ISPRS: Beijing, China, 2008; pp. 1373–1380. [Google Scholar]
- Lewis, G. Evaluating the use of a low-cost unmanned aerial vehicle platform in acquiring digital imagery for emergency response. In Geomatics Solutions for Disaster Management; Li, J., Zlatanova, S., Fabbri, A.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 117–133. [Google Scholar]
- Murphy, R.R.; Steimle, E.; Griffin, C.; Cullins, C.; Hall, M.; Pratt, K. Cooperative use of unmanned sea surface and micro aerial vehicles at hurricane wilma. J. Field Robot. 2008, 25, 164–180. [Google Scholar] [CrossRef]
- Kochersberger, K.; Kroeger, K.; Krawiec, B.; Brewer, E.; Weber, T. Post-disaster remote sensing and sampling via an autonomous helicopter. J. Field Robot. 2014, 31, 510–521. [Google Scholar] [CrossRef]
- Adams, S.M.; Levitan, M.L.; Friedland, C.J. High resolution imagery collection for post-disaster studies utilizing unmanned aircraft systems (uas). Photogramm. Eng. Remote Sens. 2014, 80, 1161–1168. [Google Scholar] [CrossRef] [Green Version]
- Dominici, D.; Baiocchi, V.; Zavino, A.; Alicandro, M.; Elaiopoulos, M. Micro uav for post seismic hazards surveying in old city center of l’aquila. In FIG Working Week; FIG: Rome, Italy, 2012; p. 15. [Google Scholar]
- Mavroulis, S.; Andreadakis, E.; Spyrou, N.I.; Antoniou, V.; Skourtsos, E.; Papadimitriou, P.; Kasssaras, I.; Kaviris, G.; Tselentis, G.A.; Voulgaris, N.; et al. Uav and gis based rapid earthquake-induced building damage assessment and methodology for ems-98 isoseismal map drawing: The june 12, 2017 mw 6.3 lesvos (northeastern aegean, greece) earthquake. Int. J. Disaster Risk Reduct. 2019, 37, 20. [Google Scholar] [CrossRef]
- Dominici, D.; Alicandro, M.; Massimi, V. Uav photogrammetry in the post-earthquake scenario: Case studies in l’aquila. Geomat. Nat. Hazards Risk 2017, 8, 87–103. [Google Scholar] [CrossRef] [Green Version]
- Hein, D.; Kraft, T.; Brauchle, J.; Berger, R. Integrated uav-based real-time mapping for security applications. ISPRS Int. Geo-Inf. 2019, 8, 219. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.Q.; Yang, J.S.; Peng, C.Y.; Wu, Y.; Jiang, X.D.; Li, R.; Zheng, Y.; Gao, Y.; Liu, S.; Tian, B.F. Development of an uas for post-earthquake disaster surveying and its application in ms7.0 lushan earthquake, sichuan, china. Comput. Geosci. 2014, 68, 22–30. [Google Scholar] [CrossRef]
- Gowravaram, S.; Tian, P.Z.; Flanagan, H.; Goyer, J.; Chao, H.Y. Uas-based multispectral remote sensing and ndvi calculation for post disaster assessment. In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems, Dallas, TX, USA, 12–15 June 2018; IEEE: New York, NY, USA, 2018; pp. 684–691. [Google Scholar]
- Fernandez Galarreta, J.; Kerle, N.; Gerke, M. Uav-based urban structural damage assessment using object-based image analysis and semantic reasoning. Nat. Hazards Earth Syst. Sci. 2015, 15, 1087–1101. [Google Scholar] [CrossRef] [Green Version]
- Grenzdorffer, G.J.; Guretzki, M.; Friedlander, I. Photogrammetric image acquisition and image analysis of oblique imagery. Photogramm. Record 2008, 23, 372–386. [Google Scholar] [CrossRef]
- Gerke, M.; Kerle, N. Automatic structural seismic damage assessment with airborne oblique pictometry © imagery. Photogramm. Eng. Remote Sens. 2011, 77, 885–898. [Google Scholar] [CrossRef]
- Gerke, M.; Kerle, N. Graph matching in 3d space for structural seismic damage assessment. In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 6–13 November 2011. [Google Scholar]
- Zeng, T.; Yang, W.N.; Li, X.D. Seismic damage information extent about the buildings based on low-altitude remote sensing images of mianzu quake-stricken areas. Appl. Mech. Mater. 2012, 105–107, 1889–1893. [Google Scholar] [CrossRef]
- Vetrivel, A.; Gerke, M.; Kerle, N.; Vosselman, G. Identification of damage in buildings based on gaps in 3d point clouds from very high resolution oblique airborne images. ISPRS-J. Photogramm. Remote Sens. 2015, 105, 61–78. [Google Scholar] [CrossRef]
- Li, S.; Tang, H.; He, S.; Shu, Y.; Mao, T.; Li, J.; Xu, Z. Unsupervised detection of earthquake-triggered roof-holes from uav images using joint color and shape features. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1823–1827. [Google Scholar]
- Vetrivel, A.; Gerke, M.; Kerle, N.; Vosselman, G. Segmentation of uav-based images incorporating 3d point cloud information. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, II-3/W4, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Dorafshan, S.; Thomas, R.J.; Maguire, M. Fatigue crack detection using unmanned aerial systems in fracture critical inspection of steel bridges. J. Bridge Eng. 2018, 23, 15. [Google Scholar] [CrossRef]
- Chen, S.Y.; Laefer, D.F.; Mangina, E.; Zolanvari, S.M.I.; Byrne, J. Uav bridge inspection through evaluated 3d reconstructions. J. Bridge Eng. 2019, 24, 15. [Google Scholar] [CrossRef] [Green Version]
- Akbar, M.A.; Qidwai, U.; Jahanshahi, M.R. An evaluation of image-based structural health monitoring using integrated unmanned aerial vehicle platform. Struct. Control. Health Monit. 2019, 26, 20. [Google Scholar] [CrossRef] [Green Version]
- Kakooei, M.; Baleghi, Y. Fusion of satellite, aircraft, and uav data for automatic disaster damage assessment. Int. J. Remote Sens. 2017, 38, 2511–2534. [Google Scholar] [CrossRef]
- Vetrivel, A.; Duarte, D.; Nex, F.; Gerke, M.; Kerle, N.; Vosselman, G. Potential of multi-temporal oblique airborne imagery for structural damage assessment. In Proceedings of the XXIII ISPRS Congress, Commission III, International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 12–19 July 2016; Halounova, L., Schindler, K., Limpouch, A., Pajdla, T., Safar, V., Mayer, H., Elberink, S.O., Mallet, C., Rottensteiner, F., Bredif, M., et al., Eds.; International Society for Photogrammetry and Remote Sensing: Prague, Czech Republic, 2016; Volume 3, pp. 355–362. [Google Scholar]
- Tu, J.H.; Sui, H.G.; Feng, W.Q.; Jia, Q. Detecting facade damage on moderate damaged type from high-resolution oblique aerial images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5598–5607. [Google Scholar] [CrossRef]
- Lucks, L.; Bulatov, D.; Thönnessen, U.; Böge, M. Superpixel-wise assessment of building damage from aerial images. In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2019, Prague, Czech Republic, 25–27 February 2019; pp. 211–220. [Google Scholar]
- Duarte, D.; Nex, F.; Kerle, N.; Vosselman, G. Towards a more efficient detection of earthquake induced façade damages using oblique uav imagery. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, XLII-2/W6, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Dorafshan, S.; Maguire, M. Bridge inspection: Human performance, unmanned aerial systems and automation. J. Civ. Struct. Health Monit. 2018, 8, 443–476. [Google Scholar] [CrossRef] [Green Version]
- Dorafshan, S.; Coopmans, C.; Thomas, R.J.; Maguire, M. Deep learning neural networks for suas-assisted structural inspections: Feasibility and application. In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems, Dallas, TX, USA, 12–15 June 2018; IEEE: New York, NY, USA, 2018; pp. 874–882. [Google Scholar]
- Xu, Z.H.; Wu, L.X.; Zhang, Z.X. Use of active learning for earthquake damage mapping from uav photogrammetric point clouds. Int. J. Remote Sens. 2018, 39, 5568–5595. [Google Scholar] [CrossRef]
- Vetrivel, A.; Gerke, M.; Kerle, N.; Nex, F.; Vosselman, G. Disaster damage detection through synergistic use of deep learning and 3d point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning. ISPRS-J. Photogramm. Remote Sens. 2018, 140, 45–59. [Google Scholar] [CrossRef]
- Duarte, D.; Nex, F.; Kerle, N.; Vosselman, G. Satellite image classification of building damages using airborne and satellite image samples in a deep learning approach. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, IV-2, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Duarte, D.; Nex, F.; Kerle, N.; Vosselman, G. Multi-resolution feature fusion for image classification of building damages with convolutional neural networks. Remote Sens. 2018, 10, 1636. [Google Scholar] [CrossRef] [Green Version]
- Kerle, N.; Ghaffarian, S.; Nawrotzki, R.; Leppert, G.; Lech, M. Evaluating resilience-centered development interventions with remote sensing. Remote Sens. 2019, 11, 2511. [Google Scholar] [CrossRef] [Green Version]
- Nex, F.; Duarte, D.; Steenbeek, A.; Kerle, N. Towards real-time building damage mapping with low-cost uav solutions. Remote Sens. 2019, 11, 287. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.C.; Wei, C.C. Accelerated Disaster Reconnaissance Using Automatic Traffic Sign Detection with UAV and AI; Amer Soc Civil Engineers: New York, NY, USA, 2019; pp. 405–411. [Google Scholar]
- Duarte, D.; Nex, F.; Kerle, N.; Vosselman, G. Detection of seismic façade damages with multi-temporal oblique aerial imagery. GISci. Remote Sens. In press.
- Li, Y.D.; Ye, S.; Bartoli, I. Semisupervised classification of hurricane damage from postevent aerial imagery using deep learning. J. Appl. Remote Sens. 2018, 12, 045008. [Google Scholar] [CrossRef]
- Li, Y.D.; Hu, W.; Dong, H.; Zhang, X.Y. Building damage detection from post-event aerial imagery using single shot multibox selector. Appl. Sci. 2019, 9, 1128. [Google Scholar] [CrossRef] [Green Version]
- Liang, X. Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with bayesian optimization. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 415–430. [Google Scholar] [CrossRef]
- Nex, F.; Duarte, D.; Tonolo, F.G.; Kerle, N. Structural building damage detection with deep learning: Assessment of a state-of-the-art cnn in operational conditions. Remote Sens. 2019, 11, 2765. [Google Scholar] [CrossRef] [Green Version]
- Song, D.M.; Tan, X.; Wang, B.; Zhang, L.; Shan, X.J.; Cui, J.Y. Integration of super-pixel segmentation and deep-learning methods for evaluating earthquake-damaged buildings using single-phase remote sensing imagery. Int. J. Remote Sens. 2019, 41, 1040–1066. [Google Scholar] [CrossRef]
- Huang, H.; Sun, G.Y.; Zhang, X.M.; Hao, Y.L.; Zhang, A.Z.; Ren, J.C.; Ma, H.Z. Combined multiscale segmentation convolutional neural network for rapid damage mapping from postearthquake very high-resolution images. J. Appl. Remote Sens. 2019, 13, 022007. [Google Scholar] [CrossRef]
- Vetrivel, A.; Gerke, M.; Kerle, N.; Vosselman, G. Identification of structurally damaged areas in airborne oblique images using a visual-bag-of-words approach. Remote Sens. 2016, 8, 231. [Google Scholar] [CrossRef] [Green Version]
- Gong, L.X.; Wang, C.; Wu, F.; Zhang, J.F.; Zhang, H.; Li, Q. Earthquake-induced building damage detection with post-event sub-meter vhr terrasar-x staring spotlight imagery. Remote Sens. 2016, 8, 887. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Liu, W.; Jia, Y.Q.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; IEEE: New York, NY, USA, 2015; pp. 1–9. [Google Scholar]
- Cusicanqui, J.; Kerle, N.; Nex, F. Usability of aerial video footage for 3-d scene reconstruction and structural damage assessment. Nat. Hazards Earth Syst. Sci. 2018, 18, 1583–1598. [Google Scholar] [CrossRef] [Green Version]
- Mitomi, H.; Yamzaki, F.; Matsuoka, M. Automated detection of building damage due to recent earthquakes using aerial television image. In 21st Asian Conference on Remote Sensing, Taipei, Taiwan, 2000; GIS Development: Taipei, Taiwan, 2000; pp. 401–406. [Google Scholar]
- Grünthal, G. European Macroseismic Scale 1998 (ems-98); Cahiers du Centre Européen de Géodynamique et de Séismologie, Centre Européen de Géodynamique et de Séismologie: Walferdange, Luxembourg, 1998; Volume 15, p. 99. [Google Scholar]
- Yamazaki, F.; Yano, Y.; Matsuoka, M. Visual damage interpretation of buildings in bam city using quickbird images following the 2003 bam, iran, earthquake. Earthq. Spectra 2005, 21, S328–S336. [Google Scholar] [CrossRef]
- Corbane, C.; Saito, K.; Dell’Oro, L.; Gill, S.P.D.; Piard, B.E.; Huyck, C.K.; Kemper, T.; Lemoine, G.; Spence, R.J.S.; Shankar, R.; et al. A comprehensive analysis of building damage in the 12 january 2010 mw7 haiti earthquake using high resolution satellite and aerial imagery. Photogramm. Eng. Remote Sens. 2011, 77, 997–1009. [Google Scholar] [CrossRef]
- Dubois, D.; Lepage, R. Fast and efficient evaluation of building damage from very high resolution optical satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4167–4176. [Google Scholar] [CrossRef]
- Li, W.; Shuai, X.; Liu, Q. Building damage characteristics analysis based on the three-dimensional image from oblique photography. J. Nat. Disasters 2016, 25, 152–158. [Google Scholar]
- Lattanzi, D.; Miller, G.R. 3d scene reconstruction for robotic bridge inspection. J. Infrastruct. Syst. 2015, 21, 12. [Google Scholar] [CrossRef]
- Zou, Y.; Gonzalez, V.; Lim, J.; Amor, R.; Guo, B.; Babaeian Jelodar, M. Systematic framework for post-earthquake bridge inspection through uav and 3d bim reconstruction. In Proceedings of the CIB World Building Congress, Hong Kong, China, 17–21 June 2019; p. 9. [Google Scholar]
- Akcay, S.; Atapour Abarghouei, A.; Breckon, T. Skip-ganomaly: Skip connected and adversarially trained encoder-decoder anomaly detection. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [Google Scholar]
- Loquercio, A.; Kaufmann, E.; Ranftl, R.; Dosovitskiy, A.; Koltun, V.; Scaramuzza, D. Deep drone racing: From simulation to reality with domain randomization. IEEE Trans. Robot. 2019, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Palossi, D.; Loquercio, A.; Conti, F.; Flamand, E.; Scaramuzza, D.; Benini, L. A 64mw dnn-based visual navigation engine for autonomous nano-drones. IEEE Internet Things J. 2019, 6, 8357–8371. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.H.; Zhou, Z.; Feng, M.; Yan, Y.; Xu, H.; Qian, L. Real-time single object detection on the uav. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems, ICUAS 2019, Atlanta, GA, USA, 11–14 June 2019; pp. 1013–1022. [Google Scholar]
- Siam, M.; Eikerdawy, S.; Gamal, M.; Abdel-Razek, M.; Jagersand, M.; Zhang, H. Real-time segmentation with appearance, motion and geometry. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Madrid, Spain, 1–5 October 2018; pp. 5793–5800. [Google Scholar]
- Delmerico, J.; Mintchev, S.; Giusti, A.; Gromov, B.; Melo, K.; Horvat, T.; Cadena, C.; Hutter, M.; Ijspeert, A.; Floreano, D.; et al. The current state and future outlook of rescue robotics. J. Field Robot. 2019, 36, 1171–1191. [Google Scholar] [CrossRef]
- Trujillo, J.C.; Munguia, R.; Guerra, E.; Grau, A. Visual-based slam configurations for cooperative multi-uav systems with a lead agent: An observability-based approach. Sensors 2018, 18, 4243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bavle, H.; Sanchez-Lopez, J.L.; de la Puente, P.; Rodriguez-Ramos, A.; Sampedro, C.; Campoy, P. Fast and robust flight altitude estimation of multirotor uavs in dynamic unstructured environments using 3d point cloud sensors. Aerospace 2018, 5, 94. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xian, B.; Zhao, B.; Zhang, Y. Autonomous flight control of a nano quadrotor helicopter in a gps-denied environment using on-board vision. IEEE Trans. Ind. Electron. 2015, 62, 6392–6403. [Google Scholar] [CrossRef]
- Paredes, J.A.; Alvarez, F.J.; Aguilera, T.; Villadangos, J.M. 3d indoor positioning of uavs with spread spectrum ultrasound and time-of-flight cameras. Sensors 2018, 18, 89. [Google Scholar] [CrossRef] [Green Version]
- Falanga, D.; Kleber, K.; Mintchev, S.; Floreano, D.; Scaramuzza, D. The foldable drone: A morphing quadrotor that can squeeze and fly. IEEE Robot. Autom. Lett. 2018, 4, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Quenzel, J.; Nieuwenhuisen, M.; Droeschel, D.; Beul, M.; Houben, S.; Behnke, S. Autonomous mav-based indoor chimney inspection with 3d laser localization and textured surface reconstruction. J. Intell. Robot. Syst. 2019, 93, 317–335. [Google Scholar] [CrossRef]
- Schweizer, E.A.; Stow, D.A.; Coulter, L.L. Automating near real-time, post-hazard detection of crack damage to critical infrastructure. Photogramm. Eng. Remote Sens. 2018, 84, 76–87. [Google Scholar] [CrossRef]
- Sanchez-Cuevas, P.J.; Ramon-Soria, P.; Arrue, B.; Ollero, A.; Heredia, G. Robotic system for inspection by contact of bridge beams using uavs. Sensors 2019, 19, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez-Cano, A.E.; Heredia, G.; Ollero, A. Aerial manipulator with a compliant arm for bridge inspection. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017; pp. 1217–1222. [Google Scholar]
- Lin, L.; Yang, Y.; Cheng, H.; Chen, X. Autonomous vision-based aerial grasping for rotorcraft unmanned aerial vehicles. Sensors 2019, 19, 3410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruggiero, F.; Lippiello, V.; Ollero, A. Introduction to the special issue on aerial manipulation. IEEE Robot. Autom. Lett. 2018, 3, 2734–2737. [Google Scholar] [CrossRef]
- Salaan, C.J.; Tadakuma, K.; Okada, Y.; Ohno, K.; Tadokoro, S. Uav with two passive rotating hemispherical shells and horizontal rotor for hammering inspection of infrastructure. In Proceedings of the 2017 IEEE/SICE International Symposium on System Integration, Taipei, Taiwan, 11–14 December 2017; pp. 769–774. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerle, N.; Nex, F.; Gerke, M.; Duarte, D.; Vetrivel, A. UAV-Based Structural Damage Mapping: A Review. ISPRS Int. J. Geo-Inf. 2020, 9, 14. https://doi.org/10.3390/ijgi9010014
Kerle N, Nex F, Gerke M, Duarte D, Vetrivel A. UAV-Based Structural Damage Mapping: A Review. ISPRS International Journal of Geo-Information. 2020; 9(1):14. https://doi.org/10.3390/ijgi9010014
Chicago/Turabian StyleKerle, Norman, Francesco Nex, Markus Gerke, Diogo Duarte, and Anand Vetrivel. 2020. "UAV-Based Structural Damage Mapping: A Review" ISPRS International Journal of Geo-Information 9, no. 1: 14. https://doi.org/10.3390/ijgi9010014
APA StyleKerle, N., Nex, F., Gerke, M., Duarte, D., & Vetrivel, A. (2020). UAV-Based Structural Damage Mapping: A Review. ISPRS International Journal of Geo-Information, 9(1), 14. https://doi.org/10.3390/ijgi9010014