Mutualistic Pattern of Intra-Urban Agglomeration and Impact Analysis: A Case Study of 11 Urban Agglomerations of Mainland China
Abstract
:1. Introduction
- The proportion of endogenous mutualism of a UA has a positive effect on its coordinated development;
- Symmetrical and asymmetrical mutualism have different impacts on the socio-economic development of cities.
2. Literature Review
2.1. Definition of Urban Agglomeration
2.2. Endogenous Interactions of UA
2.3. Symbiotic Analysis of Urban and Regional Studies
3. Study Area and Data Source
4. Methodologies
4.1. Identification of Mutualism of Intra-UA
4.1.1. City Connection Matrix Based on the BI
4.1.2. Identification of Intra-UA Mutualistic Patterns
4.2. Effects of Intercity Mutualism on Cities and UAs
5. Results and Analyses
5.1. Interaction Network Based on the BI
5.2. Internal Mutualistic Pattern of the 11 UAs
5.3. Effect Analysis of the Intra-UA Mutualism
6. Discussion
6.1. Understanding the Symbiotic System of UA
6.2. Mutualistic Development of Intra-UA
6.3. Implications on the Planning and Management of UA
6.4. Priority for Future Studies
7. Conclusions
Funding
Conflicts of Interest
References
- Ye, C.; Zhu, J.; Li, S.; Yang, S.; Chen, M. Assessment and analysis of regional economic collaborative development within an urban agglomeration: Yangtze River Delta as a case study. Habitat Int. 2019, 83, 20–29. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, A.; Wang, H.; Zhang, B.; Zhang, Y. Bidirectional urban flows in rapidly urbanizing metropolitan areas and their macro and micro impacts on urban growth: A case study of the Yangtze River middle reaches megalopolis, China. Land Use Policy 2019, 82, 158–168. [Google Scholar] [CrossRef]
- Lin, J.; Wu, Z.; Li, X. Measuring inter-city connectivity in an urban agglomeration based on multi-source data. Int. J. Geogr. Inf. Sci. 2019, 33, 1062–1081. [Google Scholar] [CrossRef]
- Tripathi, S. Relationship between Infrastructure and Population Agglomeration in Urban India: An Empirical Assessment. Available online: https://www.adb.org/publications/relationshipbetween-infrastructure-population-agglomeration-india (accessed on 28 September 2020).
- Zeng, C.; Song, Y.; Cai, D.; Hu, P.; Cui, H.; Yang, J.; Zhang, H. Exploration on the spatial spillover effect of infrastructure network on urbanization: A case study in Wuhan urban agglomeration. Sustain. Cities Soc. 2019, 47, 101476. [Google Scholar] [CrossRef]
- Zong, J.; Lin, Z.; Guo, M.; Zhou, L. Urban agglomeration and job search behavior: Evidence from China. J. Asia Pac. Econ. 2020, 25, 307–325. [Google Scholar] [CrossRef]
- Zheng, S.; Du, R. How does urban agglomeration integration promote entrepreneurship in China? Evidence from regional human capital spillovers and market integration. Cities 2020, 97, 102529. [Google Scholar] [CrossRef]
- Weiwei, C.; Fei, Y.; Yuxian, G.; Zhenjing, P. Economic Network Structure of Urban Agglomeration in Chengdu-Chongqing Economic Zone. Technol. Econ. 2016, 35, 52–57+128. [Google Scholar]
- Arribas-Bel, D.; Kourtit, K.; Nijkamp, P.; Steenbruggen, J. Cyber cities: Social media as a tool for understanding cities. Appl. Spat. Anal. Policy 2015, 8, 231–247. [Google Scholar] [CrossRef]
- Han, J.; Liu, J. Urban Spatial Interaction Analysis Using Inter-City Transport Big Data: A Case Study of the Yangtze River Delta Urban Agglomeration of China. Sustainability 2018, 10, 4459. [Google Scholar] [CrossRef] [Green Version]
- Zhen, F.; Cao, Y.; Qin, X.; Wang, B. Delineation of an urban agglomeration boundary based on Sina Weibo microblog ‘check-in’data: A case study of the Yangtze River Delta. Cities 2017, 60, 180–191. [Google Scholar] [CrossRef]
- Zhang, L.; Du, H.; Zhao, Y.; Wu, R.; Zhang, X. Urban networks among Chinese cities along” the Belt and Road”: A case of web search activity in cyberspace. PLoS ONE 2017, 12, e0188868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Zhao, M. Research on the city network of Guangdong, Hongkong and Macao from the perspective of information flow: Analysis based on baidu index. J. Reg. City Plan. 2018, 29, 281–293. [Google Scholar] [CrossRef] [Green Version]
- Paracer, S.; Ahmadjian, V. Symbiosis: An Introduction to Biological Associations; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Jensen, P.D.; Basson, L.; Hellawell, E.E.; Leach, M. ‘Habitat’suitability index mapping for industrial symbiosis planning. J. Ind. Ecol. 2012, 16, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Díez-Pisonero, R. Airports and cities in the context of globalisation: A multidimensional symbiosis in Adolfo Suárez-Madrid Barajas Airport. Geogr. J. 2019, 185, 485–497. [Google Scholar] [CrossRef]
- Wang, Y.; Li, P.; Zhu, Z.; Liu, Z. The evaluation of eco-efficiency of the industrial coupling symbiosis network of the eco-industrial park in oil and gas resource cities. Energy Sci. Eng. 2019, 7, 899–911. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Wang, S.; Wang, K.; Gao, Y.; Zhang, R. Uncovering the benefits of integrating industrial symbiosis and urban symbiosis targeting a resource-dependent city: A case study of Yongcheng, China. J. Clean. Prod. 2020, 255, 120210. [Google Scholar] [CrossRef]
- Howard, E. Garden Cities of to-Morrow; Routledge: London, UK, 2013. [Google Scholar]
- Geddes, P. Cities in Evolution: An Introduction to the Town Planning Movement and to the Study of Civics; Williams: London, UK, 1915. [Google Scholar]
- Gottmann, J. Megalopolis or the urbanization of the northeastern seaboard. Econ. Geogr. 1957, 33, 189–200. [Google Scholar] [CrossRef]
- Yao, C. Research on the Coordinated Development of Chinese Urban Agglomeration in the New Era from the Perspective of Polycentric Spatial Structure; Jilin University: Jilin, China, 2019. [Google Scholar]
- Fang, C.; Song, J.; Zhang, Q.; Li, M. The formation, development and spatial heterogeneity patterns for the structures system of urban agglomerations in China. Acta Geogr. Sin. 2005, 60, 827. [Google Scholar]
- Yao, S.; Chen, Z.; Zhu, Y. China’s Urban Agglomeration; University of Science and Technology of China Press: Hefei, China, 2006. [Google Scholar]
- Liu, S. Some important Issues about urban agglomeration planning and construction in China. Jiangsu Soc. Sci. 2015, 5, 30–38. [Google Scholar]
- Bruinsma, F.; Rietveld, P. Urban agglomerations in European infrastructure networks. Urban Stud. 1993, 30, 919–934. [Google Scholar] [CrossRef]
- Kabisch, N.; Haase, D. Diversifying European agglomerations: Evidence of urban population trends for the 21st century. Popul. Space Place 2011, 17, 236–253. [Google Scholar] [CrossRef]
- Takhteyev, Y.; Gruzd, A.; Wellman, B. Geography of Twitter networks. Soc. Netw. 2012, 34, 73–81. [Google Scholar] [CrossRef]
- Kauffmann, A. Is the ‘Central German Metropolitan Region’spatially integrated? An empirical assessment of commuting relations. Urban Stud. 2015. [Google Scholar] [CrossRef]
- Cao, S.; Hu, D.; Hu, Z.; Zhao, W.; Chen, S.; Yu, C. Comparison of spatial structures of urban agglomerations between the Beijing-Tianjin-Hebei and Boswash based on the subpixel-level impervious surface coverage product. J. Geogr. Sci. 2018, 28, 306–322. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Shu, S.; Liu, H.; Song, W.; Wu, J.; Wang, L.; Chen, Z. Object-based spatial cluster analysis of urban landscape pattern using nighttime light satellite images: A case study of China. Int. J. Geogr. Inf. Sci. 2014, 28, 2328–2355. [Google Scholar] [CrossRef]
- Ramachandra, T.; Aithal, B.H.; Sowmyashree, M. Urban structure in Kolkata: Metrics and modelling through geo-informatics. Appl. Geomat. 2014, 6, 229–244. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L.; Ding, Y. The Baidu Index: Uses in predicting tourism flows—A case study of the forbidden city. Tour. Manag. 2017, 58, 301–306. [Google Scholar] [CrossRef]
- Li, S.; Chen, T.; Wang, L.; Ming, C. Effective tourist volume forecasting supported by PCA and improved BPNN using Baidu index. Tour. Manag. 2018, 68, 116–126. [Google Scholar] [CrossRef]
- Pei, Z.; Xiao, X. Urban spatial structure of hunan province from the perspective of space flow—Based on tencent location big data and baidu index analysis. Chin. Overseas Archit. 2018, 10, 80–84. [Google Scholar]
- Qu, L.; Hao, Y. Research on planing urban and rural areas as a whole based on symbiosis theory. Res. Agric. Mod. 2004, 5, 371–374. [Google Scholar]
- Zhu, J. Regional cooperation research based on symbiosis theory—A case study of Wuhan urban agglomeration. J. Huazhong Univ. Sci. Technol. (Soc. Sci. Ed.) 2010, 24, 92–97. [Google Scholar]
- Vukonic, B. Religion, tourism and economics: A convenient symbiosis. Tour. Recreat. Res. 2002, 27, 59–64. [Google Scholar] [CrossRef]
- Lee, S.; Song, D.; Ducruet, C. A tale of Asia’s world ports: The spatial evolution in global hub port cities. Geoforum 2008, 39, 372–385. [Google Scholar] [CrossRef] [Green Version]
- Limtanakool, N.; Dijst, M.; Schwanen, T. A theoretical framework and methodology for characterising national urban systems on the basis of flows of people: Empirical evidence for France and Germany. Urban Stud. 2007, 44, 2123–2145. [Google Scholar] [CrossRef]
- Jia, S.; Wang, C.; Li, Y.; Zhang, F.; Liu, W. The urbanization efficiency in Chengdu City: An estimation based on a three-stage DEA model. Phys. Chem. Earth Parts A/B/C 2017, 101, 59–69. [Google Scholar] [CrossRef]
- Trukhachev, V.I.; Kostyukova, E.I.; Gromov, E.I.; Gerasimov, A. Comprehensive socio-ecological and economic assessment of the status and development of Southern Russia agricultural regions. Life Sci. J. 2014, 11, 478–482. [Google Scholar]
- Bowen, R.E.; Riley, C. Socio-economic indicators and integrated coastal management. Ocean Coast. Manag. 2003, 46, 299–312. [Google Scholar] [CrossRef]
- Girard, L.F.; Cerreta, M.; De Toro, P. Towards a local comprehensive productive development strategy: A methodological proposal for the metropolitan city of Naples. Qual. Innov. Prosper. 2017, 21, 223–240. [Google Scholar] [CrossRef] [Green Version]
- Jha, R.; Singh, V.P. Evaluation of riverwater quality by entropy. Ksce J. Civ. Eng. 2008, 12, 61–69. [Google Scholar] [CrossRef]
- Tzeng, G.-H.; Huang, J.-J. Multiple Attribute Decision Making: Methods and Applications; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Liu, W.; Jiao, F.; Ren, L.; Xu, X.; Wang, J.; Wang, X. Coupling coordination relationship between urbanization and atmospheric environment security in Jinan City. J. Clean. Prod. 2018, 204, 1–11. [Google Scholar] [CrossRef]
- Linneker, B.; Spence, N. Road transport infrastructure and regional economic development: The regional development effects of the M25 London orbital motorway. J. Transp. Geogr. 1996, 4, 77–92. [Google Scholar] [CrossRef]
- Perloff Harvey, S.; Dunn, E.S., Jr.; Lampard, E.E.; Keith, R.F. Regions, Resources, and Economic Growth; University of Nebraska Press: Lincoln, NE, USA, 1960. [Google Scholar]
- Derudder, B.; Taylor, P.J.; Hoyler, M.; Ni, P.; Liu, X.; Zhao, M.; Shen, W.; Witlox, F. Measurement and interpretation of connectivity of Chinese cities in world city network, 2010. Chin. Geogr. Sci. 2013, 23, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Mu, H.; Yao, L.; Zhang, W.; Ban, Q.; Lei, Z. Research on symbiotic spatial structure of scenic spots based on the original authenticity construction—Take three gorges as an example. In Tourism and Hospitality Development Between China and EU; Springer: Berlin/Heidelberg, Germany, 2015; pp. 73–84. [Google Scholar]
- Brezzi, M.; Veneri, P. Assessing polycentric urban systems in the OECD: Country, regional and metropolitan perspectives. Eur. Plan. Stud. 2015, 23, 1128–1145. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, Y.; Kong, X. Restructuring rural settlements based on mutualism at a patch scale: A case study of Huangpi District, central China. Appl. Geogr. 2018, 92, 74–84. [Google Scholar] [CrossRef]
- Wang, C.; Huang, B.; Deng, C.; Wan, Q.; Zhang, L.; Fei, Z.; Li, H. Rural settlement restructuring based on analysis of the peasant household symbiotic system at village level: A Case Study of Fengsi Village in Chongqing, China. J. Rural Stud. 2016, 47, 485–495. [Google Scholar] [CrossRef]
- Veneri, P.; Burgalassi, D. Questioning polycentric development and its effects. Issues of definition and measurement for the Italian NUTS-2 regions. Eur. Plan. Stud. 2012, 20, 1017–1037. [Google Scholar] [CrossRef] [Green Version]
- Malý, J. Impact of polycentric urban systems on intra-regional disparities: A micro-regional approach. Eur. Plan. Stud. 2016, 24, 116–138. [Google Scholar] [CrossRef]
- Shan, Z.; Huang, Y. China’s new urbanization: Strategy, action, and performances assessment. Planner 2013, 4, 10–14. [Google Scholar]
- Ding, Y.; de Vries, B.; Han, Q. Measuring regional sustainability by a coordinated development model of economy, society, and environment: A case study of Hubei Province. Procedia Environ. Sci. 2014, 22, 131–137. [Google Scholar] [CrossRef] [Green Version]
Scenario | Stopping Time (min) | |
---|---|---|
t = 1 | <3 | 0.132 |
t = 2 | 3 < t < 5 | 0.358 |
t = 3 | t > 5 | 0.510 |
l | Speed (km/h) | |
---|---|---|
Fast train | 120 | 0.048 |
Express train | 140 | 0.120 |
Direct express train | 160 | 0.157 |
Bullet train | 200 | 0.293 |
High-speed rail | 300 | 0.382 |
Index | Values of NSI | Formula | Explanation |
---|---|---|---|
SMP | [−0.3,0.3] | SMP indicates the extent to which a city mutually interacts with the other city. It is a positive indicator, representing a reciprocal interaction. | |
AMP | NSI > 0.3 or NSI < −0.3 | The value of AMP index could be positive or negative. If positive, it means that it has inward connections considering overall connections; otherwise, it has outward connections. |
Aspect | Indicators | Direction |
---|---|---|
Demography | Total population | + |
Urban population | + | |
City construction | Per capita urban construction land | + |
Per capita road mileage | + | |
Per capita public green area | + | |
Economic development | Gross domestic product | + |
Secondary industry output | + | |
Tertiary industry output | + | |
Annual per capita income | + | |
Per capita fixed investment | + | |
Social improvement | Per capita educational time | + |
Proportion of people with endowment insurance | + | |
Proportion of people with health insurance | + | |
Number of colleagues or universities per 10,000 people | + | |
Number of hospitals per 10,000 people | + |
UA | Proportion of SMP | AMP Index of Cities | |
---|---|---|---|
City with Maximum Value | City with Minimum Value | ||
Hachang | 28.9% | 3.46 (Songyuan) | −5.09 (Yanbian) |
Mid-Southern Liaoning | 17.6% | 1.01 (Benxi) | −1.48 (Yingkou) |
Jingjinji | 65.1% | 1.63 (Chengde) | −1.36 (Qinghuangdao) |
Shandong Peninsula | 26.5% | 1.79 (Rizhao) | −1.47 (Zibo) |
Guanzhong Plain | 42.9% | 1.86 (Shangluo) | −2.38 (Yuncheng) |
Central Plain | 38.9% | 16.59 (Jiyuan) | −12.55 (Xinxiang) |
Yangtze River Delta | 74.0% | 14.02 (Zhoushan) | −11.03 (Jinhua) |
Chengyu | 54.3% | 3.51 (Chongqing) | −4.15 (Deyang) |
Yangtze River Valley | 29.6% | 7.58 (Ezhou) | −14.66 (Huanggang) |
Pearl River Delta | 62.2% | 2.72 (Yangjiang) | −2.46 (Jiangmen) |
Beibu Gulf | 36.1% | 2.35 (Maoming) | −4.37 (Yulin) |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | 0.122 | 0.148 | 0.081 | 0.036 | 0.04 | 0.18 | 0.108 | 0.1 | 0.046 | 0.021 | 0.034 | 0.012 | 0.032 | 0.0099 | 0.030 |
b | 0.186 | 0.161 | 0.002 | 0.005 | 0.084 | 0.126 | 0.037 | 0.133 | 0.086 | 0.012 | 0.014 | 0.014 | 0.013 | 0.052 | 0.075 |
c | 0.115 | 0.16 | 0.048 | 0.035 | 0.047 | 0.124 | 0.091 | 0.08 | 0.056 | 0.02 | 0.012 | 0.015 | 0.011 | 0.1 | 0.086 |
d | 0.142 | 0.195 | 0.025 | 0.028 | 0.035 | 0.056 | 0.045 | 0.184 | 0.042 | 0.034 | 0.035 | 0.012 | 0.012 | 0.072 | 0.083 |
e | 0.116 | 0.192 | 0.038 | 0.037 | 0.045 | 0.125 | 0.084 | 0.131 | 0.051 | 0.025 | 0.011 | 0.021 | 0.015 | 0.038 | 0.071 |
f | 0.187 | 0.163 | 0.037 | 0.034 | 0.116 | 0.073 | 0.037 | 0.12 | 0.043 | 0.026 | 0.016 | 0.011 | 0.015 | 0.039 | 0.083 |
g | 0.123 | 0.163 | 0.026 | 0.026 | 0.073 | 0.114 | 0.087 | 0.094 | 0.047 | 0.027 | 0.028 | 0.012 | 0.019 | 0.045 | 0.116 |
h | 0.139 | 0.167 | 0.011 | 0.052 | 0.052 | 0.119 | 0.079 | 0.112 | 0.071 | 0.013 | 0.012 | 0.026 | 0.022 | 0.105 | 0.020 |
i | 0.165 | 0.174 | 0.035 | 0.033 | 0.048 | 0.111 | 0.049 | 0.146 | 0.051 | 0.018 | 0.027 | 0.013 | 0.018 | 0.034 | 0.078 |
j | 0.114 | 0.138 | 0.089 | 0.072 | 0.081 | 0.077 | 0.082 | 0.125 | 0.046 | 0.032 | 0.025 | 0.021 | 0.015 | 0.016 | 0.067 |
k | 0.163 | 0.184 | 0.075 | 0.064 | 0.055 | 0.139 | 0.016 | 0.068 | 0.054 | 0.033 | 0.017 | 0.012 | 0.032 | 0.066 | 0.022 |
SMP | AMP | |||||||
---|---|---|---|---|---|---|---|---|
B | t | p | B | t | p | |||
Hachang | 0.460 | 1.911 | 0.088 | 0.537 | 0.345 | 2.981 | 0.015 | 0.705 |
Mid-Southern Liaoning | 4.475 | 3.321 | 0.013 | 0.782 | 1.204 | 10.658 | 0.000 | 0.971 |
Jingjinji | 8.126 | 2.864 | 0.021 | 0.711 | 1.957 | 3.679 | 0.006 | 0.793 |
Shandong Peninsula | 1.773 | 5.166 | 0.002 | 0.904 | 0.511 | 3.393 | 0.015 | 0.811 |
Guanzhong Plain | 0.402 | 6.179 | 0.000 | 0.900 | 0.209 | 2.588 | 0.029 | 0.653 |
Central Plain | 2.435 | 10.181 | 0.000 | 0.887 | 0.513 | 4.517 | 0.000 | 0.649 |
Yangtze River Delta | 3.890 | 4.411 | 0.000 | 0.669 | 3.592 | 5.365 | 0.000 | 0.738 |
Chengyu | 7.606 | 10.767 | 0.000 | 0.945 | 2.139 | 5.414 | 0.000 | 0.823 |
Yangtze River Valley | 2.875 | 5.030 | 0.000 | 0.683 | 0.652 | 3.182 | 0.003 | 0.509 |
Pearl River Delta | 3.947 | 10.834 | 0.000 | 0.952 | 2.755 | 4.856 | 0.000 | 0.814 |
Beibu Gulf | 0.677 | 2.124 | 0.060 | 0.658 | 0.425 | 3.561 | 0.005 | 0.748 |
Socio-economic Development | Coupling Coordination | |||||
---|---|---|---|---|---|---|
B | t | p | B | t | p | |
Number of cities | 0.919 | 2.003 | 0.012 | 0.803 | 3.165 | 0.025 |
Number of connections | 0.406 | 3.487 | 0.018 | 0.173 | 2.685 | 0.044 |
Connection density | −19.460 | −0.991 | 0.367 | −5.561 | −0.761 | 0.481 |
SMP | 20.993 | 2.072 | 0.093 | 10.332 | 2.742 | 0.041 |
AMP | 12.100 | 2.044 | 0.096 | −0.023 | −0.010 | 0.992 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y. Mutualistic Pattern of Intra-Urban Agglomeration and Impact Analysis: A Case Study of 11 Urban Agglomerations of Mainland China. ISPRS Int. J. Geo-Inf. 2020, 9, 565. https://doi.org/10.3390/ijgi9100565
Tian Y. Mutualistic Pattern of Intra-Urban Agglomeration and Impact Analysis: A Case Study of 11 Urban Agglomerations of Mainland China. ISPRS International Journal of Geo-Information. 2020; 9(10):565. https://doi.org/10.3390/ijgi9100565
Chicago/Turabian StyleTian, Yasi. 2020. "Mutualistic Pattern of Intra-Urban Agglomeration and Impact Analysis: A Case Study of 11 Urban Agglomerations of Mainland China" ISPRS International Journal of Geo-Information 9, no. 10: 565. https://doi.org/10.3390/ijgi9100565
APA StyleTian, Y. (2020). Mutualistic Pattern of Intra-Urban Agglomeration and Impact Analysis: A Case Study of 11 Urban Agglomerations of Mainland China. ISPRS International Journal of Geo-Information, 9(10), 565. https://doi.org/10.3390/ijgi9100565