A Framework of Spatio-Temporal Fusion Algorithm Selection for Landsat NDVI Time Series Construction
Abstract
:1. Introduction
2. Methodology
2.1. Base Spatiotemporal Fusion Algorithms
2.1.1. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM)
2.1.2. The Enhanced STARFM (ESTARFM)
2.2. Spatial and Temporal Variance
2.3. Performance Assessment
3. Experimentation and Effectiveness Analysis
3.1. Experimental Area and Datasets
3.1.1. Experimental Area
3.1.2. Datasets and Preprocessing
3.2. Construction of Landsat Normalized Difference Vegetation Index (NDVI) Time Series
3.3. Effectiveness Analysis
3.3.1. Effectiveness of Algorithm Screening
3.3.2. Land Cover Change Detection and Phenological Stability Analysis
4. Discussion
4.1. Advantages and Adaptability
4.2. Uncertainty and Challenges
4.3. Perspectives
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
STARFM | Spatial and Temporal Adaptive Reflectance Fusion Model |
ESTARFM | Enhanced STARFM |
NDVI | Normalized Difference Vegetation Index |
MODIS | Moderate Resolution Imaging Spectroradiometer |
GIMMS | Global Inventory Modeling And Mapping Studies |
ETM+ | Enhanced Thematic Mapper Plus |
R2 | Coefficient Of Determination |
BFAST | Breaks For Additive Seasonal and Trend |
MAD | Mean Absolute Difference |
SOS | Start Of Growing Season |
EOS | End of Growing Season |
S–G | Savitzky–Golay Filter |
MOSUMs | Moving Sums |
TM | Thematic Mapper |
OLI | Operational Land Imager |
LEDAPS | Landsat Ecosystem Disturbance Adaptive Processing System |
USGS EROS | U.S. Geological Survey Of The Earth Resources Observation And Science Center |
L8SR | Landsat 8 Surface Reflectance |
BRDF-NBAR | Nadir Bidirectional Reflectance Distribution Function-Adjusted Reflectance |
DOY | Day Of Year |
TTS | Target Landsat NDVI Time Series |
MTS | MODIS NDVI Time Series |
STS | STRAFM Based Landsat NDVI Time Series |
ETS | ESTRAFM Based Landsat NDVI Time Series |
LIM | Linear Interpolation Model |
STRUFM | Spatial And Temporal Reflectance Unmixing Model |
ISTRUFM | Improved STRUFM |
FSDAF | Flexible Spatiotemporal DAta Fusion |
SSIM | Structural Similarity |
RMSE | Root Mean Square Error |
UIQI | Universal Image Quality Index |
UNOSAT | UNITAR’s Operational Satellite Applications Program |
UN-REDD | United Nations Collaborative Program On Reducing Emissions From Deforestation And Forest Degradation |
GEE | Google Earth Engine |
API | Application Programming Interface |
References
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhu, X.; Vogelmann, J.E.; Gao, F.; Jin, S. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sens. Environ. 2011, 115, 1053–1064. [Google Scholar] [CrossRef]
- Moller, M.; Gerstmann, H.; Thurkow, D.; Gao, F. Coupling of phenological information and synthetically generated time-series for crop types as indicator for vegetation coverage information. In Proceedings of the Analysis of Multitemporal Remote Sensing Images, Annecy, France, 22–24 July 2015; pp. 1–4. [Google Scholar]
- Möller, M.; Gerstmann, H.; Gao, F.; Dahms, T.C.; Förster, M. Coupling of phenological information and simulated vegetation index time series: Limitations and potentials for the assessment and monitoring of soil erosion risk. CATENA 2017, 150, 192–205. [Google Scholar] [CrossRef]
- Tian, F.; Wang, Y.; Fensholt, R.; Wang, K.; Zhang, L.; Huang, Y. Mapping and Evaluation of NDVI Trends from Synthetic Time Series Obtained by Blending Landsat and MODIS Data around a Coalfield on the Loess Plateau. Remote Sens. 2013, 5, 4255–4279. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Lucas, R.; Bunting, P.; Verbesselt, J.; Armston, J. Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia. Remote Sens. Environ. 2015, 158, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Huang, B.; Xu, B. Comparison of Spatiotemporal Fusion Models: A Review. Remote Sens. 2015, 7, 1798–1835. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Gao, F.; Hilker, T.; Zhu, X.; Anderson, M.; Masek, J.; Wang, P.; Yang, Y. Fusing Landsat and MODIS Data for Vegetation Monitoring. IEEE Geosci. Remote Sens. Mag. 2015, 3, 47–60. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, H. Spatio-temporal reflectance fusion via unmixing: Accounting for both phenological and land-cover changes. Int. J. Remote Sens. 2014, 35, 6213–6233. [Google Scholar] [CrossRef]
- Jia, D.; Gao, P.; Cheng, C.; Ye, S. Multiple-feature-driven co-training method for crop mapping based on remote sensing time series imagery. Int. J. Remote Sens. 2020, 41, 8096–8120. [Google Scholar] [CrossRef]
- Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.; Chen, J.; Lefsky, M.A. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens. Environ. 2016, 172, 165–177. [Google Scholar] [CrossRef]
- Rao, Y.; Zhu, X.; Chen, J.; Wang, J. An Improved Method for Producing High Spatial-Resolution NDVI Time Series Datasets with Multi-Temporal MODIS NDVI Data and Landsat TM/ETM+ Images. Remote Sens. 2015, 7, 7865–7891. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Woodcock, C.E.; Holden, C.; Yang, Z. Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time. Remote Sens. Environ. 2015, 162, 67–83. [Google Scholar] [CrossRef]
- Samanta, A.; Costa, M.H.; Nunes, E.L.; Vieira, S.A.; Xu, L.; Myneni, R.B. Comment on “Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009”. Science 2011, 329, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Guan, K.; Peng, J. STAIR: A generic and fully-automated method to fuse multiple sources of optical satellite data to generate a high-resolution, daily and cloud-/gap-free surface reflectance product. Remote Sens. Environ. 2018, 214, 87–99. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; Mcdermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ. 2009, 113, 1613–1627. [Google Scholar] [CrossRef]
- Wu, B.; Huang, B.; Cao, K.; Zhuo, G. Improving spatiotemporal reflectance fusion using image inpainting and steering kernel regression techniques. Int. J. Remote Sens. 2017, 38, 706–727. [Google Scholar] [CrossRef]
- Zhang, W.; Li, A.; Jin, H.; Bian, J.; Zhang, Z.; Lei, G.; Qin, Z.; Huang, C. An enhanced spatial and temporal data fusion model for fusing Landsat and MODIS surface reflectance to generate high temporal Landsat-like data. Remote Sens. 2013, 5, 5346–5368. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Niu, Z.; Wang, C.; Wu, C.; Wang, L. Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model. J. Appl. Remote. Sens. 2012, 6, 063507. [Google Scholar]
- Song, H.; Huang, B. Spatiotemporal satellite image fusion through one-pair image learning. IEEE Geosci. Remote. Sens. Lett. 2012, 51, 1883–1896. [Google Scholar] [CrossRef]
- Song, H.; Liu, Q.; Wang, G.; Hang, R.; Huang, B. Spatiotemporal satellite image fusion using deep convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 821–829. [Google Scholar] [CrossRef]
- Jia, D.; Song, C.; Cheng, C.; Shen, S.; Ning, L.; Hui, C. A Novel Deep Learning-Based Spatiotemporal Fusion Method for Combining Satellite Images with Different Resolutions Using a Two-Stream Convolutional Neural Network. Remote Sens. 2020, 12, 698. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Leung, Y.; Fung, T. A Bayesian data fusion approach to spatio-temporal fusion of remotely sensed images. Remote Sens. 2017, 9, 1310. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Martínez, Á.; Izquierdo-Verdiguier, E.; Maneta, M.P.; Camps-Valls, G.; Robinson, N.; Muñoz-Marí, J.; Sedano, F.; Clinton, N.; Running, S.W. Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud. Remote Sens. Environ. 2020, 247, 111901. [Google Scholar] [CrossRef]
- Walker, J.; De Beurs, K.; Wynne, R.; Gao, F. Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology. Remote Sens. Environ. 2012, 117, 381–393. [Google Scholar] [CrossRef]
- Hobyb, A.I.E.; Radgui, A.; Tamtaoui, A.; Er-Raji, A.; Hadani, D.E.; Merdas, M.; Smiej, F.M. Evaluation of spatiotemporal fusion methods for high resolution daily NDVI prediction. In Proceedings of the 5th International Conference on Multimedia Computing and Systems (ICMCS), Marrakech, Morocco, 29 September–1 October 2016; pp. 121–126. [Google Scholar]
- Knauer, K.; Gessner, U.; Fensholt, R.; Kuenzer, C. An ESTARFM Fusion Framework for the Generation of Large-Scale Time Series in Cloud-Prone and Heterogeneous Landscapes. Remote Sens. 2016, 8, 425. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Ding, F.; Wu, W.; Chen, J. Improvement of ESTARFM and its application to fusion of Landsat-8 and MODIS Land Surface Temperature images. In Proceedings of the Fourth International Workshop on Earth Observation and Remote Sensing Applications, Guangzhou, China, 4–6 July 2016; pp. 33–37. [Google Scholar]
- Sun, F.; Roderick, M.L.; Farquhar, G.D.; Lim, W.H.; Zhang, Y.; Bennett, N.; Roxburgh, S.H. Partitioning the variance between space and time. Geophys. Res. Lett. 2010, 37, 107. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Chen, Y.; Shi, X.; Chen, Z.; Li, W. Temperature and precipitation changes in different environments in the;arid region of northwest China. Theor. Appl. Climatol. 2013, 112, 589–596. [Google Scholar] [CrossRef]
- Verbesselt, J.; Zeileis, A.; Herold, M. Near real-time disturbance detection using satellite image time series. Remote Sens. Environ. 2012, 123, 98–108. [Google Scholar] [CrossRef]
- Wang, C.; Lei, S.; Elmore, A.J.; Jia, D.; Mu, S. Integrating Temporal Evolution with Cellular Automata for Simulating Land Cover Change. Remote Sens. 2019, 11, 301. [Google Scholar] [CrossRef] [Green Version]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- He, Z.; Du, J.; Zhao, W.; Yang, J.; Chen, L.; Zhu, X.; Chang, X.; Liu, H. Assessing temperature sensitivity of subalpine shrub phenology in semi-arid mountain regions of China. Agric. For. Meteorol. 2015, 213, 42–52. [Google Scholar] [CrossRef]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Zhou, J.; Cai, W.; Qin, Y.; Lai, L.; Guan, T.; Zhang, X.; Jiang, L.; Du, H.; Yang, D.; Cong, Z. Alpine vegetation phenology dynamic over 16 years and its covariation with climate in a semi-arid region of China. Sci. Total Environ. 2016, 572, 119–128. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Vujadinovic, T. The Potential of the Least-Squares Spectral and Cross-Wavelet Analyses for Near-Real-Time Disturbance Detection within Unequally Spaced Satellite Image Time Series. Remote Sens. 2020, 12, 2446. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y. Land Use Changes in Shendong Coal Mining Area. In Proceedings of the International Conference on Multimedia Technology, Ningbo, China, 29–31 October 2010; pp. 1–4. [Google Scholar]
- Lei, S.; Ren, L.; Bian, Z. Time–space characterization of vegetation in a semiarid mining area using empirical orthogonal function decomposition of MODIS NDVI time series. Environ. Earth Sci. 2016, 75, 516. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, S.; Cheng, L.; Cheng, W.; Xiong, J.; Bian, Z. Leaf photosynthesis of three typical plant species affected by the subsidence cracks of coal mining: A case study in the semiarid region of Western China. Photosynthetica 2019, 57, 75–85. [Google Scholar] [CrossRef]
- Ma, C.; Cheng, X.; Yang, Y.; Zhang, X.; Guo, Z.; Zou, Y. Investigation on mining subsidence based on multi-temporal InSAR and time-series analysis of the small baseline subset—Case study of working faces 22201-1/2 in Bu’ertai mine, Shendong coalfield, China. Remote Sens. 2016, 8, 951. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Song, H. Spatiotemporal Reflectance Fusion via Sparse Representation. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3707–3716. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Li, P.; Jiang, L.; Feng, Z. Cross-Comparison of Vegetation Indices Derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) Sensors. Remote Sens. 2013, 6, 310–329. [Google Scholar] [CrossRef] [Green Version]
- Canty, M.J.; Nielsen, A.A. Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation. Remote Sens. Environ. 2008, 112, 1025–1036. [Google Scholar] [CrossRef] [Green Version]
- Emelyanova, I.V.; Mcvicar, T.R.; Niel, T.G.V.; Li, L.T.; Dijk, A.I.J.M.V. Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection. Remote Sens. Environ. 2013, 133, 193–209. [Google Scholar] [CrossRef]
- Wang, Z.; Schaaf, C.B.; Sun, Q.; Kim, J.H.; Erb, A.M.; Gao, F.; Román, M.O.; Yang, Y.; Petroy, S.; Taylor, J.R. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product. Int. J. Appl. Earth. Obs. Geoinf. 2017, 59, 104–117. [Google Scholar] [CrossRef]
- Chen, B.; Huang, B.; Xu, B. Constucting a unified framework for multi-source remotely sensed data fusion. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 2574–2577. [Google Scholar]
- Bhandari, S.; Phinn, S.; Gill, T. Preparing Landsat Image Time Series (LITS) for Monitoring Changes in Vegetation Phenology in Queensland, Australia. Remote Sens. 2012, 4, 1856–1886. [Google Scholar] [CrossRef] [Green Version]
- Hmimina, G.; Dufrêne, E.; Pontailler, J.-Y.; Delpierre, N.; Aubinet, M.; Caquet, B.; De Grandcourt, A.; Burban, B.; Flechard, C.; Granier, A. Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements. Remote Sens. Environ. 2013, 132, 145–158. [Google Scholar] [CrossRef]
- Eklundh, L.; Jönsson, P. TIMESAT: A software package for time-series processing and assessment of vegetation dynamics. In Remote Sensing Time Series; Springer: Cham, Switzerland, 2015; pp. 141–158. [Google Scholar]
- Jonsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Amorós-López, J.; Gómez-Chova, L.; Alonso, L.; Guanter, L.; Zurita-Milla, R.; Moreno, J.; Camps-Valls, G. Multitemporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 132–141. [Google Scholar] [CrossRef]
- Liao, L.; Song, J.; Wang, J.; Xiao, Z.; Wang, J. Bayesian Method for Building Frequent Landsat-Like NDVI Datasets by Integrating MODIS and Landsat NDVI. Remote Sens. 2016, 8, 452. [Google Scholar] [CrossRef] [Green Version]
- Gevaert, C.M.; García-Haro, F.J. A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion. Remote Sens. Environ. 2015, 156, 34–44. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, W.; Marinoni, A.; Gao, L.; Zhang, B. An improved spatial and temporal reflectance unmixing model to synthesize time series of landsat-like images. Remote Sens. 2018, 10, 1388. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Zhang, Y.; Wang, J. A dynamic Bayesian network data fusion algorithm for estimating leaf area index using time-series data from in situ measurement to remote sensing observations. Int. J. Remote Sens. 2012, 33, 1106–1125. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, R.; Chen, J.; Zhu, X.; Zhou, J.; Wang, G.; Shen, M.; Chen, X.; Yang, W. A New Cross-Fusion Method to Automatically Determine the Optimal Input Image Pairs for NDVI Spatiotemporal Data Fusion. IEEE Geosci. Remote. Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Jarihani, A.A.; McVicar, T.R.; Van Niel, T.G.; Emelyanova, I.V.; Callow, J.N.; Johansen, K. Blending Landsat and MODIS data to generate multispectral indices: A comparison of “Index-then-Blend” and “Blend-then-Index” approaches. Remote Sens. 2014, 6, 9213–9238. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Running, S.W. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Liu, X.; Deng, C.; Chanussot, J.; Hong, D.; Zhao, B. Stfnet: A two-stream convolutional neural network for spatiotemporal image fusion. IEEE Geosci. Remote. Sens. Lett. 2019, 57, 6552–6564. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
Date | Satellite | Resolution (Pan/MS) | Band | ID Scene |
---|---|---|---|---|
2012-9-30 | ZY-03 | 2.1/5.8 | B, G, R, NIR | ZY3_MUX_E110.4_N39.0_20120930_L1A0001611699 |
2013-9-6 | SPOT 6 | 1.5/6 | Pan, B, G, R, NIR | DIM_SPOT6_MS_201309060254349_SEN_14705884-0_01 |
2014-8-7 | Pleiades | 0.5/2 | Pan, B, G, R, NIR | DS_PHR1A_201408070345035_SE1_PX_E110N39_0407_00804 |
2015-8-17 | GF-1 | -/16 | B, G, R, NIR | GF1_WFV4_E110.4_N38.5_20150817_L1A0000985438 |
2016-9-13 | GF-1 | 2/8 | Pan, B, G, R, NIR | GF1_PMS1_E110.3_N39.4_20160913_L1A0001824149 |
Type | Regression Function | Adjusted R2 | F-Value | Samples |
---|---|---|---|---|
S_GS | 0.82 | 3.64 × 10−6 | 25 | |
S_NGS | 0.89 | 3.65 × 10−8 | 25 | |
ES_GS | 0.85 | 9.57 × 10−13 | 38 | |
ES_NGS | 0.83 | 2.076 × 10−6 | 29 |
DOY | R2 | Selected Algorithm | |||
---|---|---|---|---|---|
STARFM | Accuracy Grade | ESTARFM | Accuracy Grade | ||
075 | 0.6321 | middle accuracy | 0.7326 | general high accuracy | S |
083 | 0.7781 | general high accuracy | 0.7091 | general high accuracy | S |
107 | 0.6950 | middle accuracy | 0.7220 | general high accuracy | S |
115 | 0.7640 | general high accuracy | 0.8292 | high accuracy | E |
123 | 0.8341 | high accuracy | 0.8717 | high accuracy | E |
131 | 0.8800 | high accuracy | 0.8902 | high accuracy | E |
139 | 0.8866 | high accuracy | 0.8733 | high accuracy | E |
179 | 0.9192 | high accuracy | 0.8618 | high accuracy | E |
187 | 0.8149 | high accuracy | 0.9105 | high accuracy | E |
235 | 0.9187 | high accuracy | 0.8863 | high accuracy | E |
259 | 0.9124 | high accuracy | 0.9416 | high accuracy | E |
275 | 0.8074 | high accuracy | 0.9054 | high accuracy | E |
299 | 0.8494 | high accuracy | 0.8068 | high accuracy | E |
307 | 0.7678 | high accuracy | 0.7533 | general high accuracy | E |
DOY | AAD | RMSE | SSIM | UIQI | ||||
---|---|---|---|---|---|---|---|---|
STARFM | ESTARFM | STARFM | ESTARFM | STARFM | ESTARFM | STARFM | ESTARFM | |
75 | 0.0209 | 0.0164 | 0.0282 | 0.0227 | 0.4409 | 0.5438 | 0.9565 | 0.9764 |
83 | 0.0163 | 0.0212 | 0.0223 | 0.0285 | 0.6111 | 0.5703 | 0.9791 | 0.9594 |
107 | 0.0305 | 0.0221 | 0.0379 | 0.0285 | 0.4381 | 0.4751 | 0.9382 | 0.9635 |
115 | 0.0183 | 0.0145 | 0.0243 | 0.0195 | 0.5841 | 0.7126 | 0.9759 | 0.9846 |
123 | 0.0150 | 0.0179 | 0.0202 | 0.0248 | 0.6557 | 0.7056 | 0.9869 | 0.9815 |
131 | 0.0226 | 0.0248 | 0.0315 | 0.0336 | 0.7748 | 0.7713 | 0.9772 | 0.9742 |
139 | 0.0228 | 0.0264 | 0.0314 | 0.0361 | 0.7206 | 0.7089 | 0.9788 | 0.9724 |
179 | 0.0273 | 0.0283 | 0.0364 | 0.0390 | 0.8277 | 0.7928 | 0.9820 | 0.9752 |
187 | 0.0437 | 0.0261 | 0.0636 | 0.0356 | 0.6709 | 0.8415 | 0.9543 | 0.9830 |
235 | 0.0659 | 0.0818 | 0.0830 | 0.1002 | 0.7495 | 0.7243 | 0.9592 | 0.9389 |
259 | 0.0685 | 0.0512 | 0.0881 | 0.0629 | 0.7296 | 0.8356 | 0.9433 | 0.9665 |
275 | 0.0393 | 0.0310 | 0.0538 | 0.0407 | 0.6190 | 0.8035 | 0.9716 | 0.9796 |
299 | 0.0300 | 0.0291 | 0.0388 | 0.0389 | 0.6164 | 0.6136 | 0.9671 | 0.9661 |
307 | 0.0236 | 0.0255 | 0.0312 | 0.0361 | 0.5105 | 0.5427 | 0.9694 | 0.9563 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Wang, C.; Lei, S.; Yang, J.; Zhao, Y. A Framework of Spatio-Temporal Fusion Algorithm Selection for Landsat NDVI Time Series Construction. ISPRS Int. J. Geo-Inf. 2020, 9, 665. https://doi.org/10.3390/ijgi9110665
Guo Y, Wang C, Lei S, Yang J, Zhao Y. A Framework of Spatio-Temporal Fusion Algorithm Selection for Landsat NDVI Time Series Construction. ISPRS International Journal of Geo-Information. 2020; 9(11):665. https://doi.org/10.3390/ijgi9110665
Chicago/Turabian StyleGuo, Yangnan, Cangjiao Wang, Shaogang Lei, Junzhe Yang, and Yibo Zhao. 2020. "A Framework of Spatio-Temporal Fusion Algorithm Selection for Landsat NDVI Time Series Construction" ISPRS International Journal of Geo-Information 9, no. 11: 665. https://doi.org/10.3390/ijgi9110665
APA StyleGuo, Y., Wang, C., Lei, S., Yang, J., & Zhao, Y. (2020). A Framework of Spatio-Temporal Fusion Algorithm Selection for Landsat NDVI Time Series Construction. ISPRS International Journal of Geo-Information, 9(11), 665. https://doi.org/10.3390/ijgi9110665