Spatiotemporal Exploration of Chinese Spring Festival Population Flow Patterns and Their Determinants Based on Spatial Interaction Model
Abstract
:1. Introduction
2. Related Literature
3. Study Area and Data
3.1. Study Area
3.2. Study Data
4. Methods
4.1. City Classification and Community Detection
4.2. Spatial Interaction Models
4.2.1. Global Poisson Gravity Model
4.2.2. Origin-Specific and Destination-Specific Models
4.2.3. Origin-Focused and Destination-Focused Models
4.2.4. Variables Selection
5. Results
5.1. Spatiotemporal Patterns of Population Flow
5.2. SWIMs Result
5.2.1. Results from the Global Poisson Gravity Model
5.2.2. Results of Origin-Specific and Destination-Specific Interaction Models
5.2.3. Results of Origin-Focused and Destination-Focused Interaction Models
5.2.4. Comparison of Spatial Interaction Models
6. Discussion
6.1. Uncertainty Analysis
6.2. Comparison with Related Research
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, F.; Fan, W.; Lin, X.; Liu, J.; Ye, X. Does Population Mobility Contribute to Urbanization Convergence? Empirical Evidence from Three Major Urban Agglomerations in China. Sustainability 2020, 12, 458. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.-Y.; Wang, W.-X.; Gao, Z.-Y.; Lai, Y.-C. Universal model of individual and population mobility on diverse spatial scales. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soriano-Paños, D.; Arias-Castro, J.H.; Reyna-Lara, A.; Martínez, H.J.; Meloni, S.; Gómez-Gardenes, J. Vector-borne epidemics driven by human mobility. Phys. Rev. Res. 2020, 2, 013312. [Google Scholar] [CrossRef] [Green Version]
- Deville, P.; Song, C.; Eagle, N.; Blondel, V.D.; Barabási, A.-L.; Wang, D. Scaling identity connects human mobility and social interactions. Proc. Natl. Acad. Sci. USA 2016, 113, 7047–7052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Haas, H. Migration and development: A theoretical perspective. Int. Migr. Rev. 2010, 44, 227–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rees, P.; Bell, M.; Kupiszewski, M.; Kupiszewska, D.; Ueffing, P.; Bernard, A.; Charles-Edwards, E.; Stillwell, J. The impact of internal migration on population redistribution: An international comparison. Popul. Space Place 2017, 23, e2036. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, Y.; Ren, F.; Zhu, R.; Wang, P.; Du, T.; Du, Q. Analysing the spatial configuration of urban bus networks based on the geospatial network analysis method. Cities 2020, 96, 102406. [Google Scholar] [CrossRef]
- Zhu, R.; Lin, D.; Wang, Y.; Jendryke, M.; Xin, R.; Yang, J.; Guo, J.; Meng, L. Social Sensing of the Imbalance of Urban and Regional Development in China Through the Population Migration Network around Spring Festival. Sustainability 2020, 12, 3457. [Google Scholar] [CrossRef] [Green Version]
- Forbes. Chinese New Year: The World’s Largest Human Migration Is about to Begin; McCarthy, N., Ed.; Forbes: Jersey City, NJ, USA, 2018. [Google Scholar]
- Bogue, D.J. Internal migration. In The Study of Population; Hauser, P.M., Duncan, O.D., Eds.; University of Chicago Press: Chicago, IL, USA, 1959. [Google Scholar]
- Fan, C.C. Modeling interprovincial migration in China, 1985–2000. Eurasian Geogr. Econ. 2005, 46, 165–184. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, J. Modelling Skilled and Less-Skilled Interregional Migrations in China, 2000–2005. Popul. Space Place 2017, 23, e2027. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, W.; Zhao, X.; Hao, C.; Xie, X. Spatiotemporal Patterns of Population Mobility and its Determinants in Chinese Cities Based on Travel Big Data. Sustainability 2020, 12, 4012. [Google Scholar] [CrossRef]
- Cui, C.; Wu, X.; Liu, L.; Zhang, W. The spatial-temporal dynamics of daily intercity mobility in the Yangtze River Delta: An analysis using big data. Habitat Int. 2020, 102174. [Google Scholar] [CrossRef]
- Shang, J.; Li, P.; Li, L.; Chen, Y. The relationship between population growth and capital allocation in urbanization. Technol. Forecast. Soc. Chang. 2018, 135, 249–256. [Google Scholar] [CrossRef]
- Lai, J.B.; Pan, J.H. China’s City Network Structural Characteristics Based on Population Flow during Spring Festival Travel Rush: Empirical Analysis of “Tencent Migration” Big Data. J. Urban Plan. Dev. 2020, 146. [Google Scholar] [CrossRef]
- Pan, J.; Lai, J. Spatial pattern of population mobility among cities in China: Case study of the National Day plus Mid-Autumn Festival based on Tencent migration data. Cities 2019, 94, 55–69. [Google Scholar] [CrossRef]
- Xu, J.; Li, A.Y.; Li, D.; Liu, Y.; Du, Y.Y.; Pei, T.; Ma, T.; Zhou, C.H. Difference of urban development in China from the perspective of passenger transport around Spring Festival. Appl. Geogr. 2017, 87, 85–96. [Google Scholar] [CrossRef]
- Lancichinetti, A.; Fortunato, S. Community detection algorithms: A comparative analysis. Phys. Rev. E 2009, 80, 11. [Google Scholar] [CrossRef] [Green Version]
- Lewer, J.J.; Van den Berg, H. A gravity model of immigration. Econ. Lett. 2008, 99, 164–167. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Wang, N.N.; Zhao, Y.; Zhou, Y.G. Complex network analysis of interprovincial mobile population based on improved gravity model. China Popul. Resour. Environ. 2014, 1. [Google Scholar]
- Zhang, X.N.; Wang, W.W.; Harris, R.; Leckie, G. Analysing inter-provincial urban migration flows in China: A new multilevel gravity model approach. Migr. Stud. 2018, 8, 19–42. [Google Scholar] [CrossRef]
- Kordi, M.; Fotheringham, A.S. Spatially weighted interaction models (SWIM). Ann. Am. Assoc. Geogr. 2016, 106, 990–1012. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; O’Kelly, M.E. Spatial Interaction Models: Formulations and Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989. [Google Scholar]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, Y.; Chen, L.; Jing, N. Spatial Keyword Query of Region-Of-Interest Based on the Distributed Representation of Point-Of-Interest. ISPRS Int. J. Geo-Inf. 2019, 8, 287. [Google Scholar] [CrossRef] [Green Version]
- Qian, C.; Yi, C.; Cheng, C.; Pu, G.; Wei, X.; Zhang, H. GeoSOT-Based Spatiotemporal Index of Massive Trajectory Data. ISPRS Int. J. Geo-Inf. 2019, 8, 284. [Google Scholar] [CrossRef] [Green Version]
- Jinghu, P.; Jianbo, L. Research on spatial pattern of population mobility among cities: A case study of “Tencent Migration” big data in “National Day–Mid-Autumn Festival” vacation. Geogr. Res. 2019, 38, 1678–1693. [Google Scholar]
- Liu, W.; Hou, Q.; Xie, Z.; Mai, X. Urban Network and Regions in China: An Analysis of Daily Migration with Complex Networks Model. Sustainability 2020, 12, 3208. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Liu, Y. Skilled and less-skilled interregional migration in China: A comparative analysis of spatial patterns and the decision to migrate in 2000–2005. Habitat Int. 2016, 57, 1–10. [Google Scholar] [CrossRef]
- Cao, Z.; Zheng, X.; Liu, Y.; Li, Y.; Chen, Y. Exploring the changing patterns of China’s migration and its determinants using census data of 2000 and 2010. Habitat Int. 2018, 82, 72–82. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, L.; Liu, Y.; Huang, Z.; Liu, Y. Migration patterns in China extracted from mobile positioning data. Habitat Int. 2010, 86, 71–80. [Google Scholar] [CrossRef]
- Liu, T.; Qi, Y.; Cao, G. China’s floating population in the 21st century: Uneven landscape, influencing factors, and effects on urbanization. Acta Geogr. Sin. 2015, 70, 567–581. [Google Scholar] [CrossRef]
- Zhang, K.H.; Song, S. Rural–urban migration and urbanization in China: Evidence from time-series and cross-section analyses. China Econ. Rev. 2003, 14, 386–400. [Google Scholar] [CrossRef]
- Nordstrom, K.; Ekberg, K.; Hemmingsson, T.; Johansson, G. Sick leave and the impact of job-to-job mobility on the likelihood of remaining on the labour market—A longitudinal Swedish register study. BMC Public Health 2014, 14, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Shen, J. Jobs or amenities? Location choices of interprovincial skilled migrants in China, 2000–2005. Popul. Space Place 2014, 20, 592–605. [Google Scholar] [CrossRef]
- Bei-Lei, Y.; Meng-Xian, W.; Fang-Du, Z. The impact of floating population’s social integration to their parents’ family supporting: Based on the empirical research of seven cities in 2013. Northwest Popul. J. 2017. [Google Scholar]
- Langville, A.N.; Meyer, C.D. A survey of eigenvector methods for web information retrieval. SIAM Rev. 2005, 47, 135–161. [Google Scholar] [CrossRef] [Green Version]
- Page, L.; Brin, S.; Motwani, R.; Winograd, T. The PageRank Citation Ranking: Bringing Order to the Web; InfoLab: Stanford, CA, USA, 1999. [Google Scholar]
- Parés, F.; Gasulla, D.G.; Vilalta, A.; Moreno, J.; Ayguadé, E.; Labarta, J.; Cortés, U.; Suzumura, T. Fluid communities: A competitive, scalable and diverse community detection algorithm. In International Conference on Complex Networks and Their Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 229–240. [Google Scholar]
- Bickel, P.J.; Chen, A. A nonparametric view of network models and Newman–Girvan and other modularities. Proc. Natl. Acad. Sci. USA 2009, 106, 21068–21073. [Google Scholar] [CrossRef] [Green Version]
- Clauset, A.; Newman, M.E.; Moore, C. Finding community structure in very large networks. Phys. Rev. E 2004, 70, 066111. [Google Scholar] [CrossRef] [Green Version]
- Andersson, A.E.; Batten, D.F.; Johansson, B.; Nijkamp, P. Advances in Spatial Theory and Dynamics; North-Holland: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Batten, D.F.; Boyce, D.E. Spatial interaction, transportation, and interregional commodity flow models. In Handbook of Regional and Urban Economics; Elsevier: Amsterdam, The Netherlands, 1987; pp. 357–406. [Google Scholar]
- Sen, A.; Sööt, S. Selected procedures for calibrating the generalized gravity model. In Papers of the Regional Science Association; Springer: Berlin/Heidelberg, Germany, 1981; pp. 165–176. [Google Scholar]
- Roy, J.R.; Thill, J.-C. Spatial interaction modelling. Papers Reg. Sci. 2003, 83, 339–361. [Google Scholar] [CrossRef]
- Hurvich, C.M.; Simonoff, J.S.; Tsai, C.L. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 1998, 60, 271–293. [Google Scholar] [CrossRef]
- Nakaya, T.; Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically weighted Poisson regression for disease association mapping. Stat. Med. 2005, 24, 2695–2717. [Google Scholar] [CrossRef] [Green Version]
Origin City | Destination City | Population Migration Intensity Index |
---|---|---|
Beijing | Tianjin | 3.0503 |
Beijing | Baoding | 5.1506 |
Wuhan | Beijing | 0.0245 |
Class | Variable | Notation | Definition (Unit) | References |
---|---|---|---|---|
Dependent variable | Migration intensity index | PMII | Population migration intensity of inflow or outflow cities during the Spring Festival 2019 | [29,30] |
Independent Variables | Total population | TP | Total population at year end (10,000 persons) | [29,31] |
Gross regional product | GRP | Annual gross regional product (100 million yuan) | [29,32] | |
Value added by primary industry | VAPI | Annual value added by primary industry (100 million yuan) | [29,33] | |
Value added by secondary industry | VASI | Annual value added by secondary industry (100 million yuan) | [29,33] | |
Value-added by tertiary industry | VATI | Annual value added by tertiary industry (100 million yuan) | [29,33] | |
Average wage | AW | Average wage of employees on duty (yuan/person) | [34,35,36] | |
Foreign capital | FC | Actual utilization of foreign investment (10 million dollars) | [37] | |
Mobile phone users | MPU | Number of mobile phone users at year end (10 thousand persons) | [29,30] | |
Insured pension and insured persons | IPIP | Number of basic pension and related insurance policies available for urban employees | [29,38] |
Variable | Cities | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
DPMII outflow | 352 | 4.505 | 7.035 | 0.0024 | 65.350 |
RHPMII outflow | 352 | 6.435 | 9.056 | 0.0021 | 74.560 |
HPMII outflow | 352 | 7.162 | 7.107 | 0.0008 | 49.420 |
RWPMII outflow | 352 | 10.82 | 11.67 | 0.0013 | 82.840 |
DPMII inflow | 352 | 4.496 | 6.721 | 0.0048 | 59.450 |
RHPMII inflow | 352 | 6.454 | 7.112 | 0.0049 | 52.470 |
HPMII inflow | 352 | 7.153 | 8.452 | 0.0054 | 58.420 |
RWPMII inflow | 352 | 10.75 | 24.10 | 0.0066 | 214.10 |
Variable (Log) | VIF | Variable (Log) | VIF |
---|---|---|---|
VASI_destination | 6.00 | Foreign capital of destination | 2.17 |
VASI_origin | 5.78 | Foreign capital of origin | 2.12 |
IPIP_destination | 5.47 | VAPI_origin | 2.03 |
IPIP_origin | 5.25 | VAPI_destination | 1.96 |
Total population of destination | 5.14 | Average wage of destination | 1.48 |
Total population of origin | 4.99 | Average wage of origin | 1.45 |
Distance | 1.06 |
Level (PageRank Value) | Cities |
---|---|
First level | Beijing, Shanghai, Chengdu, Guangzhou, Shenzhen, Chongqing |
Second level | Tianjin, Nanjing, Kunming, Guiyang, Nianning, Haikou, |
Changsha, Shenyang, Harbin, Hangzhou, Changchun, Hefei, | |
Zhengzhou, Xi’an, Urumqi, and 14 other cities | |
Third level | Tangshang, Zhangjiakou, Xuzhou, Deyang, Meishan, Guilin, Zhongshan, and 60 other cities |
Fourth level | Datong, Baotou, Yan’an, Guangyuan, Zigong, Baise, Yongzhou, Shaoguan, and 129 other cities |
Fifth level | Hetian, Tongreng, Sanming, Lishui, Huangshan, Baishan, |
and 7 other cities |
Community | Major Provinces Covered | Key Cities Included | Number of Cities |
---|---|---|---|
Beijing-related | Beijing, Tianjin, Shandong, | Beijing, Tianjin, Jinan, Qinqdao, | 40 |
Shanxi, Hebei, Henan | Shijiazhuang | ||
Shenyang-related | Jilin, Hebei, Liaoning | Dalian, Shenyang, Anshan, | 18 |
Yingkou | |||
Guangzhou-related | Guangdong, Guangxi, | Guangzhou, Dongguan, Foshan, | 37 |
Hunan | Beihai, Nanning | ||
Changsha-related | Jiangxi, Hubei, Hunan | Changsha, Hengyang, Huaihua | 21 |
Haikou-related | Hainan | Sanya, Haikou, Wenchang | 10 |
Kunming-related | Yunnan | Kunming, Lijiang, Baoshang, | 10 |
Dali, Xishuangbanna | |||
Lanzhou-related | Gansu, Qinghai | Lanzhou, Xining | 8 |
Urumqi-related | Gansu, Xinjiang | Urumqi, Jiuquan | 11 |
Shanghai-related | Shanghai, Anhui, Jiangsu, | Shanghai, Hefei, Fuyang, | 40 |
Jiangxi, Zhejiang, | Huangshan, Nanjing, Suzhou | ||
Chengdu-related | Sichuan, Hubei, | Chengdu, Chongqing, Mianyang, | 23 |
Chongqing, Shanxi | Yaan, Shien, Hanzhong | ||
Wuhan-related | Anhui, Jiangxi, | Wuhan, Xiaogan, Xiangyang, | 18 |
Henan, Hubei | Jiujiang | ||
Guiyang-related | Yunnan, Guizhou | Guiyang, Zhaotong, Zunyi | 10 |
Xi’an-related | Shanxi, Henan, | Xi’an, Yuncheng, Zhoukou, | 26 |
Gansu, Shaanxi | Qingyang, Xianyang | ||
Hohhot-related | Inner Mongolia, Ningxia | Hohhot, Baotou, Yingchuan | 11 |
Harbin-related | Inner Mongolia, | Jilin, Harbin, Heihe, | 18 |
Jilin, Heilongjiang | Changchun | ||
Xiamen-related | Guangdong, Fujian | Chaozhou, Xiamen, Fuzhou, | 10 |
Putian |
Parameter | Estimated Value | Std. Err. | z-Value |
---|---|---|---|
k | −15.203 | 1.3876 | −10.960 |
α for total population of origin | 0.7154 | 0.0547 | 13.070 |
α of VAPI_origin | 0.5019 | 0.0355 | 14.150 |
α of VASI_origin | −0.4667 | 0.0444 | −10.520 |
α for average wage of origin | 0.7031 | 0.1085 | 6.4800 |
α for foreign capital of origin | 0.0356 | 0.0134 | 2.6600 |
α of IPIP_origin | −0.1009 | 0.0418 | −2.4100 |
γ for total population of destination | 0.1036 | 0.0575 | 1.8000 |
γ of VAPI_destination | −0.3018 | 0.0233 | −12.930 |
γ of VASI_destination | 0.4400 | 0.0461 | 9.5400 |
γ for average wage of destination | 0.3977 | 0.1059 | 3.7600 |
γ for foreign capital of destination | 0.0013 | 0.0160 | 0.0800 |
γ of IPIP_destination | 0.4984 | 0.0489 | 10.190 |
β of Distance | −1.9758 | 0.0191 | −103.40 |
Parameter | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
Pseudo R2 | 0.5113 | 0.1538 | 0.0707 | 0.8773 |
AIC | 49.503 | 22.923 | 16.497 | 135.77 |
k | −6.5803 | 16.675 | −57.182 | 44.372 |
γ for total population of destination | 0.0839 | 0.8413 | −3.6701 | 2.6641 |
γ of VAPI_destination | −0.0752 | 0.5086 | −1.2102 | 1.7462 |
γ of VASI_destination | 0.3091 | 0.7468 | −2.3122 | 2.9854 |
γ for average wage of destination | 0.7342 | 1.5560 | −4.2549 | 6.2910 |
γ for foreign capital of destination | 0.0210 | 0.1926 | −0.5397 | 0.5768 |
γ of IPIP_destination | 0.5739 | 0.7610 | −1.2044 | 3.9910 |
β of distance | −2.6185 | 0.5923 | −5.0484 | −1.4876 |
Parameter. | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
Pseudo R2 | 0.4715 | 0.1047 | 0.1710 | 0.7911 |
AIC | 49.911 | 42.129 | 16.784 | 300.32 |
k | 5.0536 | 14.906 | −44.189 | 59.048 |
α for total population of origin | 0.5812 | 0.8391 | −2.2902 | 3.0825 |
α of VAPI_ origin | 0.3067 | 0.5215 | −1.0845 | 2.4468 |
α of VASI_ origin | −0.1280 | 0.6027 | −1.6556 | 1.7424 |
α for average wage of origin | 0.1064 | 1.3817 | −4.8631 | 4.7240 |
α for foreign capital of origin | 0.0362 | 0.1491 | −0.4667 | 0.4832 |
α of IPIP_ origin | 0.1225 | 0.6856 | −1.7237 | 3.7148 |
β of distance | −2.7193 | 0.5475 | −4.9639 | −1.7572 |
Class | Model | Pseudo R2 | AIC | β of Distance |
---|---|---|---|---|
Global | Global Poisson gravity model | Global: 0.5515 | Global: 7632.044 | −1.9758 |
Specific | Origin-specific model | 0.0707–0.8773 (Mean: 0.5113) | 16.497–135.77 (Mean: 49.503) | −5.0484–−1.4876 (Mean: −2.6185) |
Destination-specific model | 0.1710–0.7911 (Mean: 0.4715) | 16.784–300.32 (Mean: 49.911) | −4.9639–−1.7572 (Mean: −2.7193) | |
SWIM | Origin-focused model | 0.4500–0.9788 (Mean: 0.8321) | 14.256–128.07 (Mean: 23.492) | −4.5680–−1.7990 (Mean: −2.9385) |
Destination-focused model | 0.6258–0.9843 (Mean: 0.8659) | 13.864–116.27 (Mean: 23.058) | −6.0103–1.7850 (Mean: −3.0012) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Huang, B.; Liu, X.; He, G.; Gou, Q.; Huang, Z.; Xie, C. Spatiotemporal Exploration of Chinese Spring Festival Population Flow Patterns and Their Determinants Based on Spatial Interaction Model. ISPRS Int. J. Geo-Inf. 2020, 9, 670. https://doi.org/10.3390/ijgi9110670
Zhou T, Huang B, Liu X, He G, Gou Q, Huang Z, Xie C. Spatiotemporal Exploration of Chinese Spring Festival Population Flow Patterns and Their Determinants Based on Spatial Interaction Model. ISPRS International Journal of Geo-Information. 2020; 9(11):670. https://doi.org/10.3390/ijgi9110670
Chicago/Turabian StyleZhou, Tao, Bo Huang, Xiaoqian Liu, Guangqin He, Qiang Gou, Zhihui Huang, and Cheng Xie. 2020. "Spatiotemporal Exploration of Chinese Spring Festival Population Flow Patterns and Their Determinants Based on Spatial Interaction Model" ISPRS International Journal of Geo-Information 9, no. 11: 670. https://doi.org/10.3390/ijgi9110670
APA StyleZhou, T., Huang, B., Liu, X., He, G., Gou, Q., Huang, Z., & Xie, C. (2020). Spatiotemporal Exploration of Chinese Spring Festival Population Flow Patterns and Their Determinants Based on Spatial Interaction Model. ISPRS International Journal of Geo-Information, 9(11), 670. https://doi.org/10.3390/ijgi9110670