Station-Free Bike Rebalancing Analysis: Scale, Modeling, and Computational Challenges
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Study Area and Data
3.2. Alternative Scales and Data Preprocessing
3.3. Bike-Share Rebalancing Flow Model
3.4. Region Decomposition Approach
4. Results
4.1. Imbalance Assessment Across Scales
4.2. Rebalancing Results at Different Scales
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Midgley, P. The role of smart bike-sharing systems in urban mobility. In Journeys Sharing Urban Transport Solutions; LTA Academy: Singapore, 2009; pp. 23–31. [Google Scholar]
- Jiang, Q.; Ou, S.-J.; Wei, W. Why Shared Bikes of Free-Floating Systems Were Parked Out of Order? A Preliminary Study based on Factor Analysis. Sustainability 2019, 11, 3287. [Google Scholar] [CrossRef] [Green Version]
- Büttner, J.; Mlasowsky, H.; Birkholz, T.; Gröper, D.; Fernández, A.C.; Emberger, G.; Petersen, T.; Robèrt, M.; Vila, S.S.; Reth, P.; et al. Optimizing Bike Sharing in European Cities—A Handbook; Obis Project; Intelligent Energy Europe: Brussels, Belgium, 2011. [Google Scholar]
- Rojas-Rueda, D.; de Nazelle, A.; Teixido, O.; Nieuwenhuijsen, M.J. Replacing car trips by increasing bike and public transport in the greater Barcelona metropolitan area: A health impact assessment study. Environ. Int. 2012, 49, 100–109. [Google Scholar] [CrossRef]
- Buehler, R.; Hamre, A. Business and Bikeshare User Perceptions of the Economic Benefits of Capital Bikeshare. Transp. Res. Rec. 2015, 2520, 100–111. [Google Scholar] [CrossRef]
- DeMaio, P. Bike-sharing: History, Impacts, Models of Provision, and Future. J. Public Transp. 2009, 12, 3. [Google Scholar] [CrossRef]
- Nielsen, B. The Bicycle in Denmark: Present Use and Future Potential; Ministry of Transport: Copenhagen, Demark, 1993. [Google Scholar]
- Pal, A.; Zhang, Y. Free-floating bike sharing: Solving real-life large-scale static rebalancing problems. Transp. Res. Part C Emerg. Technol. 2017, 80, 92–116. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, X.; Zhao, J. Understanding the usage of dockless bike sharing in Singapore. Int. J. Sustain. Transp. 2018, 12, 686–700. [Google Scholar] [CrossRef]
- Schmidt, C. Active travel for all? The surge in public bike-sharing programs. Environ. Health Perspect. 2018, 126, 082001. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.; Miller-Hooks, E. Fleet Management for Vehicle Sharing Operations. Transp. Sci. 2011, 45, 524–540. [Google Scholar] [CrossRef]
- Chemla, D.; Meunier, F.; Calvo, R.W. Bike sharing systems: Solving the static rebalancing problem. Discret. Opt. 2013, 10, 120–146. [Google Scholar] [CrossRef]
- O’Mahony, E.; Shmoys, D.B. Data Analysis and Optimization for (Citi) Bike Sharing. In Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015. [Google Scholar]
- Liu, J.; Sun, L.; Chen, W.; Xiong, H. Rebalancing Bike Sharing Systems: A Multi-source Data Smart Optimization. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Volume 10, pp. 1005–1014. [Google Scholar]
- Fricker, C.; Gast, N. Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity. EURO J. Transp. Logist. 2016, 5, 261–291. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zheng, Y.; Yang, Q. Dynamic bike reposition: A spatio-temporal reinforcement learning approach. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, UK, 19–23 August 2018; pp. 1724–1733. [Google Scholar]
- Bulhões, T.; Subramanian, A.; Erdoğan, G.; Laporte, G. The static bike relocation problem with multiple vehicles and visits. Eur. J. Oper. Res. 2018, 264, 508–523. [Google Scholar] [CrossRef]
- Chiariotti, F.; Pielli, C.; Zanella, A.; Zorzi, M. A Dynamic Approach to Rebalancing Bike-Sharing Systems. Sensors 2018, 18, 512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, L.; Cai, Q.P.; Fang, Z.X.; Tang, P.Z.; Huang, L.B. A Deep Reinforcement Learning Framework for Rebalancing Dockless Bike Sharing Systems. In Proceedings of the AAAI Conference on Artificial Intelligence, 27 January–1 February 2019, Honolulu, HI, USA; Volume 33, pp. 1393–1400. [CrossRef]
- Xu, C.; Ji, J.; Liu, P. The station-free sharing bike demand forecasting with a deep learning approach and large-scale datasets. Transp. Res. Part C Emerg. Technol. 2018, 95, 47–60. [Google Scholar] [CrossRef]
- Zhai, Y.; Liu, J.; Du, J.; Wu, H. Fleet Size and Rebalancing Analysis of Dockless Bike-Sharing Stations Based on Markov Chain. ISPRS Int. J. Geo Inf. 2019, 8, 334. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Wang, K.; Lu, J. Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China. J. Transp. Geogr. 2020, 87, 102787. [Google Scholar] [CrossRef]
- Beecham, R.; Wood, J. Exploring gendered cycling behaviours within a large-scale behavioural data-set. Transp. Plan. Technol. 2014, 37, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Fishman, E.; Washington, S.; Haworth, N.; Watson, A. Factors influencing bike share membership: An analysis of Melbourne and Brisbane. Transp. Res. Part A 2015, 71, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Xie, K.; Ozbay, K.; Ma, Y.; Wang, Z. Use of Deep Learning to Predict Daily Usage of Bike Sharing Systems. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 92–102. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Zhong, R.; Tan, Y. A Markov Chain Based Demand Prediction Model for Stations in Bike Sharing Systems. Math. Probl. Eng. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, Q.; Shi, W.; Deng, Z.; Wang, H. Residential clustering and spatial access to public services in Shanghai. Habitat Int. 2015, 46, 119–129. [Google Scholar] [CrossRef]
- Zhang, Y.; Thomas, T.; Brussel, M.; van Maarseveen, M. Exploring the impact of built environment factors on the use of public bikes at bike stations: Case study in Zhongshan, China. J. Transp. Geogr. 2017, 58, 59–70. [Google Scholar] [CrossRef]
- El-Assi, W.; Salah Mahmoud, M.; Nurul Habib, K. Effects of built environment and weather on bike sharing demand: A station level analysis of commercial bike sharing in Toronto. Transportation 2017, 44, 589–613. [Google Scholar] [CrossRef]
- Caggiani, L.; Ottomanelli, M. A Dynamic Simulation based Model for Optimal Fleet Repositioning in Bike-sharing Systems. Proc. Soc. Behav. Sci. 2013, 87, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Vélib’. Le Bonus V’+ Sera en Service dans une Centaine de Stations Vélib’ dès le 14 Juin. 2008. Available online: http://www.velib.paris.fr/ (accessed on 15 October 2020).
- Chemla, D.; Meunier, F.; Pradeau, T.; Calvo, R.W. Self-Service Bike Sharing Systems: Simulation, Repositioning, Pricing; Technical Report hal-00824078; Centre d’Enseignement et de Recherche en Mathématiques et Calcul Scientifique–CERMICS, Laboratoire d’Informatique de Paris-Nord–LIPN, Parallélisme, Réseaux, Systèmes d’information, Modélisation–PRISM 2013: Aachen, Germany, 2013. [Google Scholar]
- Müller, J.; Schmöller, S.; Giesel, F. Identifying Users and Use of (Electric-) Free-Floating Carsharing in Berlin and Munich. In Proceedings of the 2015 IEEE 18th International Conference, Las Palmas, Spain, 15–18 September 2015; pp. 2568–2573. [Google Scholar]
- Raviv, T.; Tzur, M.; Forma, I.A. Static repositioning in a bike-sharing system: Models and solution approaches. EURO J. Transp. Logist. 2013, 2, 187–229. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.; Szeto, W. Solving a static repositioning problem in bike-sharing systems using iterated tabu search. Transp. Res. Part E Logist. Transp. Rev. 2014, 69, 180–198. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Valdes, R.; Belenguer, J.M.; Benavent, E.; Bermudez, J.D.; Muoz, F.; Vercher, E.; Verdejo, F. Optimizing the level of service quality of a bikesharing system. Omega 2016, 62, 163–175. [Google Scholar] [CrossRef]
- Gaspero, D.; Andrea, R.; Tommaso, U. Balancing bike sharing systems with constraint programming. Constraints 2015, 21, 318–348. [Google Scholar] [CrossRef]
- Schuijbroek, J.; Hampshire, R.; van Hoeve, W.J. Inventory rebalancing and vehicle routing in bike sharing systems. Eur. J. Oper. Res. 2017, 257, 992–1004. [Google Scholar] [CrossRef] [Green Version]
- Dell’Amico, M.; Hadjicostantinou, E.; Iori, M.; Novellani, S. The Bike Sharing Rebalancing Problem: Mathematical Formulations and Benchmark Instances. Omega 2014, 45, 7–19. [Google Scholar]
- Pfrommer, J.; Warrington, J.; Schildbach, G.; Morari, M. Dynamic vehicle redistribution and online price incentives in shared mobility systems. IEEE Trans. Intell. Transp. Syst. 2014, 15, 1567–1578. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Jin, X.; Ma, X.; Zhang, S. How Does Dockless Bike-Sharing System Behave by Incentivizing Users to Participate in Rebalancing? IEEE Access 2020, 8, 58889–58897. [Google Scholar] [CrossRef]
- Tong, D.; Murray, A. Spatial Optimization in Geography. Ann. Assoc. Am. Geogr. 2012, 102, 1290–1309. [Google Scholar] [CrossRef]
- Contardo, C.; Morency, C.; Rousseau, L.-M. Balancing a Dynamic Public Bike-Sharing System; Technical Report; CIRRELT: Montreal, QC, Canada, 2012. [Google Scholar]
- Caggiani, L.; Ottomanelli, M. A Modular Soft Computing Based Method for Vehicles Repositioning in Bike-shating Systems. Transp. Res. Proc. 2012, 10, 364–373. [Google Scholar]
- Szeto, W.Y.; Liu, Y.; Ho, S.C. Chemical Reaction Optimization for Solving a Static Multi-vehicle Bike Reposition Problem. Transport. Res. Part B Methodol. 2016, 109, 176–211. [Google Scholar] [CrossRef]
- Atash, F. Redesigning suburbia for walking and transit: Emerging concepts. J. Urban Plan. Dev. 1994, 120, 48–57. [Google Scholar] [CrossRef]
- Yang, Y.; Diez-Roux, A.V. Walking distance by trip purpose and population subgroups. Am. J. Prev. Med. 2012, 43, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Mátrai, T.; Tóth, J. Comparative assessment of public bike sharing systems. Transp. Res. Proc. 2016, 14, 2344–2351. [Google Scholar] [CrossRef] [Green Version]
- O’brien, O.; Cheshire, J.; Batty, M. Mining bicycle sharing data for generating insights into sustainable transport systems. J. Transp. Geogr. 2014, 34, 262–273. [Google Scholar] [CrossRef]
- Miyagawa, M. Distribution of the difference between distances to the first and second nearest facilities (ISOLDE XII). J. Oper. Res. Soc. Jpn. 2013, 56, 167–176. [Google Scholar] [CrossRef] [Green Version]
Research Article | Bike Sharing System | Type of Rebalancing Strategy | Objective | Study Unit | Number of Units |
---|---|---|---|---|---|
Chemla et al. [12] | Station-based | Operator-based | Complete rebalance | Station | 100 |
Raviv et al. [34] | Station-based | Operator-based | Minimize (a) total unmet demand, (b) total operating cost | Station | 60 |
Ho and Szeto [35] | Station-based | Operator-based | Minimize total penalties | Station | 400 |
Alvarez-Valdes et al. [36] | Station-based | Operator-based | Minimize unsatisfied demand | Station | 28 |
Gaspero et al. [37] | Station-based | Operator-based | Maximize expected future bike demands | Station | 92 |
Pal and Zhang [8] | Station-based | Operator-based | Minimize the operation time of rebalancing vehicle fleets | Station | 476 |
Schuijbroek et al. [38] | Station-based | Operator-based | Minimize (a) the deviation from a given target inventory level, (b) the number of (un)loading operations, (c) total work time | Station | 135 |
Dell’Amico et al. [39] | Station-based | Operator-based | Minimize total cost | Station | 116 |
Chemla et al. [32] | Station-based | User-based | Minimize imbalance amount | Station | 20 to 250 |
Pfrommer et al. [40] | Station-based | Operator-based and User-based | Minimize unsatisfied demand | Station | 354 |
Pan et al. [19] | Station-free | User-based | Minimize cost | Grid/square | -- |
Ji et al. [41] | Station-free | User-based | Examine the influences of acceptable walking distance and user’s cooperative factor | Grid/hexagon with side length of 100 m | 1185 |
Zhai et al. [21] | Station-free | Operator-based | Minimize travel cost | Grid/square | 20 to 1100 |
Notation | Description | |
---|---|---|
Parameter | L | Lower bound of the rebalancing ratio |
U | Upper bound of the rebalancing ratio | |
P | Set of areas with surplus imbalance | |
N | Set of areas with shortage imbalance | |
Z | Set of areas prohibiting shared bikes | |
i, j | Index of areas | |
Imbalance amount of area 𝑖 | ||
Distance between area i and area j | ||
Variable | Number of bikes relocated from area 𝑖 to area 𝑗 |
Scale (m) | Number of Grids | Max Surplus | Max Shortage | Total Imbalance | Imbalanced Grids | Percentage of Imbalanced Grids |
---|---|---|---|---|---|---|
10,000 | 14 | 293 | 279 | 1364 | 0 | 0% |
5000 | 63 | 363 | 227 | 5648 | 10 | 15.87% |
2000 | 381 | 460 | 484 | 19,602 | 185 | 48.56% |
1500 | 662 | 418 | 403 | 25,789 | 375 | 56.65% |
1000 | 1470 | 367 | 473 | 35,974 | 856 | 58.23% |
800 | 2297 | 367 | 316 | 42,996 | 1375 | 59.86% |
400 | 9476 | 363 | 302 | 65,788 | 5004 | 52.81% |
200 | 36,284 | 332 | 154 | 96,029 | 14,029 | 38.66% |
100 | 138,475 | 304 | 148 | 113,618 | 24,446 | 17.65% |
Scale (m) | Number of Grids | Objective (m) | Bikes Repositioned | Average Bike Travel Distance (m) | OD Pairs | Average Bikes Repositioned Per OD Pair |
---|---|---|---|---|---|---|
2000 | 381 | 23,264,185 | 9898 | 2350 | 322 | 31 |
1500 | 662 | 24,940,431 | 13,294 | 1876 | 533 | 25 |
1000 | 1469 | 25,504,588 | 19,146 | 1332 | 1135 | 17 |
800 | 2297 | 25,450,894 | 23,176 | 1098 | 1705 | 14 |
400 | 8715 | 25,338,955 | 52,358 | 484 | 5375 | 10 |
200 | 34,670 | 18,757,073 | 82,756 | 227 | 15,588 | 5 |
100 | 104,066 | 9,321,226 | 92,990 | 100 | 28,610 | 3 |
Scale (m) | Number of Grids | Solution Approach | Time (second) |
---|---|---|---|
2000 | 381 | Exact | 13 |
1500 | 662 | Exact | 17 |
1000 | 1469 | Exact | 88 |
800 | 2297 | Exact | 195 |
400 | 8715 | Region Decomposition Heuristic | 787 |
200 | 34,670 | Region Decomposition Heuristic | 3486 |
100 | 104,066 | Region Decomposition Heuristic | 8143 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Tong, D. Station-Free Bike Rebalancing Analysis: Scale, Modeling, and Computational Challenges. ISPRS Int. J. Geo-Inf. 2020, 9, 691. https://doi.org/10.3390/ijgi9110691
Jin X, Tong D. Station-Free Bike Rebalancing Analysis: Scale, Modeling, and Computational Challenges. ISPRS International Journal of Geo-Information. 2020; 9(11):691. https://doi.org/10.3390/ijgi9110691
Chicago/Turabian StyleJin, Xueting, and Daoqin Tong. 2020. "Station-Free Bike Rebalancing Analysis: Scale, Modeling, and Computational Challenges" ISPRS International Journal of Geo-Information 9, no. 11: 691. https://doi.org/10.3390/ijgi9110691
APA StyleJin, X., & Tong, D. (2020). Station-Free Bike Rebalancing Analysis: Scale, Modeling, and Computational Challenges. ISPRS International Journal of Geo-Information, 9(11), 691. https://doi.org/10.3390/ijgi9110691