Geodiversity Assessment with Crowdsourced Data and Spatial Multicriteria Analysis
Abstract
:1. Introduction
2. Methods
2.1. Data Crowdsourcing and Geo-Questionnaire
2.2. Local Weighted Linear Combination (L-WLC)
3. Data and Analysis
3.1. Study Area
3.2. Data Processing Workflow
3.3. Geo-Questionnaire
3.4. Geodiversity Assessment
3.5. Multicriteria Evaluation
3.6. Uncertainty Analysis
- (1)
- Low–Low: A relative low geodiversity and low uncertainty (high confidence) areas also referred to as low–low areas. These are the areas that could be categorized as exhibiting potentially inferior geodiversity based on the classification thresholds for mean geodiversity and standard deviation.
- (2)
- Low–High: A relative low geodiversity and high uncertainty (low confidence) areas referred to as low–high. These areas could be considered as candidates pending further investigation of uncertainty sources, but, overall, the areas are of inferior geodiversity.
- (3)
- High–Low: A relative high geodiversity and low uncertainty (high confidence) areas referred to as high–low. These are robust areas that could be considered as superior geodiversity areas.
- (4)
- High–High: A relative high geodiversity and high uncertainty (low confidence) areas referred to as high–high. These areas could be considered as candidate for superior geodiversity areas pending further investigation of uncertainty sources.
4. Results and Discussion
- One can identify the components of natural environment (factors) that will form the basis for factor maps in the geodiversity assessment.
- Reasonable factor ratings and weights can be crowdsourced by means of a geo-questionnaire.
- An assessment area can be logically subdivided into smaller spatial analysis units, e.g., microregions, catchments, hydrological response units etc. In this paper, catchments were selected due to the high fragmentation of the assessment area.
- Ratings of the geo-questionnaire respondents can be assigned to individual spatial units, i.e., catchments.
- Geodiversity appraisal scores are calculated with WLC and L-WLC techniques.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharples, C. Geoconservation in forest management—Principles and procedures. Tasforests 1995, 7, 37–50. [Google Scholar]
- Gray, M. Geodiversity: Valuing and Conserving Abiotic Nature, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2013; ISBN 978-0-470-74215-0. [Google Scholar]
- Gray, M. Geodiversity: Valuing and Conserving Abiotic Nature; Wiley: Chichester, UK, 2004; ISBN 0-470-84895-2. [Google Scholar]
- Zwoliński, Z. Geodiversity. In Encyclopedia of Geomorphology; Goudie, A.S., Ed.; Routledge: London, UK, 2004; Volume 1, pp. 417–418. [Google Scholar]
- Coratza, P.; Reynard, E.; Zwoliński, Z. Geodiversity and Geoheritage: Crossing Disciplines and Approaches. Geoheritage 2018, 10, 525–526. [Google Scholar] [CrossRef] [Green Version]
- Barron, H.; Gordon, J.E. The role of geodiversity in delivering ecosystem services and benefits in Scotland. Scott. J. Geol. 2013, 49, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Zwoliński, Z.; Najwer, A.; Giardino, M. Methods for Assessing Geodiversity. In Geoheritage: Assessment, Protection, and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 27–52. [Google Scholar] [CrossRef]
- Najwer, A.; Borysiak, J.; Gudowicz, J.; Mazurek, M.; Zwoliński, Z. Geodiversity and Biodiversity of the Postglacial Landscape (Dębnica River Catchment, Poland). Quaest. Geogr. 2016, 35, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Malczewski, J.; Rinner, C. Multi-Criteria Decision Analysis in Geographic Information Science; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Zwoliński, Z. The routine of landform geodiversity map design for the Polish Carpathian Mts. Landf. Anal. 2009, 11, 77–85. [Google Scholar]
- Zwoliński, Z.; Stachowiak, J. Geodiversity map of the Tatra National Park for geotourism. Quaest. Geogr. 2012, 31, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Becker, W.; Saisana, M.; Paruolo, P.; Vandecasteele, I. Weights and importance in composite indicators: Closing the gap. Ecol. Indic. 2017, 80, 12–22. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-based multi-criteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Malczewski, J. Local weighted linear combination. Trans. GIS 2011, 15, 439–455. [Google Scholar] [CrossRef]
- Czepkiewicz, M.; Jankowski, P.; Młodkowski, M. Geo-questionnaires in urban planning: Recruitment methods, participant engagement, and data quality. Cartogr. Geogr. Inf. Sci. 2017, 44, 551–567. [Google Scholar] [CrossRef]
- Jankowski, P.; Czepkiewicz, M.; Młodkowski, M.; Zwoliński, Z. Geo-questionnaire: A Method and Tool for Public Preference Elicitation in Land Use Planning. Trans. GIS 2016, 20, 903–924. [Google Scholar] [CrossRef]
- See, L.; Mooney, P.; Foody, G.; Bastin, L.; Comber, A.; Estima, J.; Fritz, S.; Kerle, N.; Jiang, B.; Laakso, M.; et al. Crowdsourcing, Citizen Science or Volunteered Geographic Information? The Current State of Crowdsourced Geographic Information. ISPRS Int. J. Geo-Inf. 2016, 5, 55. [Google Scholar] [CrossRef]
- Surowiecki, J. The Wisdom of Crowds; Doubleday: New York, NY, USA, 2004. [Google Scholar]
- Aristotle. Politics; Rackham, H., Ed.; Harvard University Press: Cambridge, UK, 1932; ISBN 9780674992917. [Google Scholar]
- Czepkiewicz, M.; Brudka, C.; Jankowski, P.; Kaczmarek, T.; Zwoliński, Z.; Mikuła, Ł.; Bąkowska, E.; Młodkowski, M.; Wójcicki, M. Public Participation GIS for sustainable urban mobility planning: Methods, applications and challenges. Rozw. Reg. i Polityka Reg. 2016, 35, 9–35. [Google Scholar]
- Kahila, M.; Kyttä, M. SoftGIS as a bridge-builder in collaborative urban planning. In Planning Support Systems Best Practice and New Methods; Geertman, S., Stillwell, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 389–411. [Google Scholar] [CrossRef]
- Brown, G.; Weber, D. Public Participation GIS: A new method for national park planning. Landsc. Urban Plan. 2011, 102, 1–15. [Google Scholar] [CrossRef]
- Chaix, B.; Kestens, Y.; Perchoux, C. An interactive mapping tool to assess individual mobility patterns in neighborhood studies. Am. J. Prev. Med. 2012, 43, 440–450. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, P.; Czepkiewicz, M.; Młodkowski, M.; Zwoliński, Z.; Wójcicki, M. Evaluating the scalability of public participation in urban land use planning: A comparison of Geoweb methods with face-to-face meetings. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 511–533. [Google Scholar] [CrossRef]
- Haklay, M.; Jankowski, P.; Zwoliński, Z. Selected modern methods and tools for public participation in urban planning—A review. Quaest. Geogr. 2018, 37, 127–149. [Google Scholar] [CrossRef] [Green Version]
- Fischer, G.W. Range sensitivity of attribute weights in multiattribute value models. Organ. Behav. Hum. Decis. Process. 1995, 62, 252–266. [Google Scholar] [CrossRef]
- Knapik, R.; Migoń, P. Atlas. Georóżnorodność i Geoturystyczne Atrakcje Karkonoskiego Parku Narodowego i Otuliny; Karkonoski Park Narodowy: Jelenia Góra, Poland, 2011; pp. 1–100. ISBN 978-83-933795-8-3. [Google Scholar]
- KNP (Karkonosze National Park). Dane GIS z terenu KNP; Jelenia Góra, 2019; Umowa nr GIS/4/2019 z dn. 16.04.2019. [Google Scholar]
- CLC (CORINE Land Cover). Projekt Corine Land Cover 2018 w Polsce; Główny Inspektorat Ochrony Środowiska: Warszawa, Poland, 2020. Available online: https://clc.gios.gov.pl (accessed on 26 October 2020).
- ESRI (Environmental Systems Research Institute). Arc Hydro Tools 2.0—Facilitate the Creation, Manipulation, and Display of Arc Hydro Features; Informer Technologies, Inc.: California, CA, USA, 2020; Available online: https://arc-hydro-tools.software.informer.com/2.0/ (accessed on 26 October 2020).
- Najwer, A.; Zwoliński, Z. Semantyka i metodyka oceny georóżnorodności—Przegląd i propozycja badawcza. Landf. Anal. 2014, 26, 115–127. [Google Scholar] [CrossRef]
- Crofts, R.; Gordon, J.E.; Brilha, J.; Gray, M.; Gunn, J.; Larwood, J.; Santucci, V.L.; Tormey, D.; Worboys, G.L. Guidelines for Geoconservation in Protected and Conserved Areas; Best Practice Protected Area Guidelines Series No. 31; IUCN: Gland, Switzerland, 2020. [Google Scholar] [CrossRef]
- GeoServer Development Team. GeoServer Software; Open Source Geospatial Foundation: Chicago, IL, USA, 2020; Available online: http://geoserver.org (accessed on 26 October 2020).
- Recoded GitLab. Geoankieta. 2020. Available online: https://recoded.co/geoplan/geoankieta (accessed on 26 October 2020).
- Likert, R. A Technique for the Measurement of Attitudes. Arch. Psychol. 1932, 140, 1–55. [Google Scholar]
- GRASS Development Team. Geographic Resources Analysis Support System (GRASS) Software; Open Source Geospatial Foundation: Chicago, IL, USA, 2020; Available online: http://grass.osgeo.org (accessed on 26 October 2020).
- Hopkins, L. Methods for generating land suitability maps: A comparative evaluation. J. Am. Inst. Plan. 1977, 34, 19–29. [Google Scholar] [CrossRef]
- Rinner, C.; Voss, S. MCDA4ArcMap: An open-source multi-criteria decision analysis and geovisualization tool for ArcGIS 10. Cartouche 2013, 86, 12–13. [Google Scholar]
- Voss, S. MCDA4ArcMap 1.1A for ArcMap 10.2 or Later rev36981. 2020. Available online: https://github.com/steffanv/mcda4arcmap/releases/tag/1.1Anew (accessed on 26 October 2020).
- Voss, S. MCDA4ArcMap version 1.1A. 2020. Available online: https://github.com/steffanv/mcda4arcmap/releases/download/1.1Anew/MCDA4ArcMap.User.Guide.pdf (accessed on 26 October 2020).
- Ligmann-Zielinska, A.; Jankowski, P. Spatially-explicit integrated uncertainty and sensitivity analysis of criteria weights in multicriteria land suitability evaluation. Environ. Model Softw. 2014, 57, 235–247. [Google Scholar] [CrossRef]
- Tomlin, C.D. Geographical Information Systems and Cartographic Modeling; Prentice-Hall: Englewood Cliffs, NJ, USA, 1990. [Google Scholar]
- Hjort, J.; Gordon, J.E.; Gray, M.; Hunter, M.L., Jr. Why geodiversity matters in valuing nature’s stage. Conserv. Biol. 2015, 29, 630–639. [Google Scholar] [CrossRef]
WLC | L-WLC | Total | |||
---|---|---|---|---|---|
Low–Low | Low–High | High–Low | High–High | ||
Low–Low | 74 | 16 | 39 | 23 | 152 |
Low–High | 30 | 15 | 20 | 18 | 83 |
High–Low | 54 | 8 | 49 | 35 | 146 |
High–High | 7 | 13 | 8 | 10 | 38 |
Total | 165 | 52 | 116 | 86 | 419 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankowski, P.; Najwer, A.; Zwoliński, Z.; Niesterowicz, J. Geodiversity Assessment with Crowdsourced Data and Spatial Multicriteria Analysis. ISPRS Int. J. Geo-Inf. 2020, 9, 716. https://doi.org/10.3390/ijgi9120716
Jankowski P, Najwer A, Zwoliński Z, Niesterowicz J. Geodiversity Assessment with Crowdsourced Data and Spatial Multicriteria Analysis. ISPRS International Journal of Geo-Information. 2020; 9(12):716. https://doi.org/10.3390/ijgi9120716
Chicago/Turabian StyleJankowski, Piotr, Alicja Najwer, Zbigniew Zwoliński, and Jacek Niesterowicz. 2020. "Geodiversity Assessment with Crowdsourced Data and Spatial Multicriteria Analysis" ISPRS International Journal of Geo-Information 9, no. 12: 716. https://doi.org/10.3390/ijgi9120716
APA StyleJankowski, P., Najwer, A., Zwoliński, Z., & Niesterowicz, J. (2020). Geodiversity Assessment with Crowdsourced Data and Spatial Multicriteria Analysis. ISPRS International Journal of Geo-Information, 9(12), 716. https://doi.org/10.3390/ijgi9120716