Geospatial Data Management Research: Progress and Future Directions
Abstract
:1. Introduction
2. Progress during the Last Decade
2.1. Milestone 1: Advancing GIS/BIM Integration at Data, Process, and Application Levels
2.2. Milestone 2: Advancing Topology as a Key Concept for Geospatial Data Management
2.3. Milestone 3: Advancing 3D/4D Geospatial Data Management
2.4. Milestone 4: Modelling and Visualization of Massive Geospatial Features on Web Platforms
2.5. Milestone 5: Extensive Use of Geosensor Data Sources
3. Future Directions
3.1. Geospatial Data Science
3.2. Topology
3.3. Bridging Geospatial Data Management with Data Streaming Libraries and ”In-Situ” Geo-Computing
3.4. Geospatial Data Visualization on Web Platforms
3.5. Database Support for Big Geospatial Data Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tan, Z.; Yue, P.; Gong, J. An Array Database Approach for Earth Observation Data Management and Processing. ISPRS Int. J. Geo Inf. 2017, 6, 220. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-S.; Sun, C.-G.; Cho, H.-I. Geospatial Big Data-Based Geostatistical Zonation of Seismic Site Effects in Seoul Metropolitan Area. ISPRS Int. J. Geo Inf. 2017, 6, 174. [Google Scholar] [CrossRef] [Green Version]
- Arroyo Ohori, K.; Diakité, A.; Krijnen, T.; Ledoux, H.; Stoter, J. Processing BIM and GIS Models in Practice: Experiences and Recommendations from a GeoBIM Project in The Netherlands. ISPRS Int. J. Geo Inf. 2018, 7, 311. [Google Scholar] [CrossRef] [Green Version]
- Hor, A.-H.; Jadidi, A.; Sohn, G. Bim-Gis Integrated Geospatial Information Model Using Semantic Web and RDF Graphs. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 73–79. [Google Scholar] [CrossRef]
- Wu, C.; Zhu, Q.; Zhang, Y.; Du, Z.; Ye, X.; Qin, H.; Zhou, Y. A NoSQL–SQL Hybrid Organization and Management Approach for Real-Time Geospatial Data: A Case Study of Public Security Video Surveillance. ISPRS Int. J. Geo Inf. 2017, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Ge, M.; Dohnal, V. Quality Management in Big Data. Informatics 2018, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Xu, M.; Yang, J.; Liang, Y.; Cui, K.; Little, M.M.; Lynnes, C.S.; Duffy, D.Q.; Yang, C. Evaluating the Open Source Data Containers for Handling Big Geospatial Raster Data. ISPRS Int. J. Geo Inf. 2018, 7, 144. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Wright, G.; Wang, J.; Wang, X. A Critical Review of the Integration of Geographic Information System and Building Information Modelling at the Data Level. IJGI 2018, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Sacks, R.; Ma, L.; Yosef, R.; Borrmann, A.; Daum, S.; Kattel, U. Semantic Enrichment for Building Information Modeling: Procedure for Compiling Inference Rules and Operators for Complex Geometry. J. Comput. Civ. Eng. 2017, 31, 04017062. [Google Scholar] [CrossRef]
- Borrmann, A.; König, M.; Koch, C.; Beetz, J. (Eds.) Building Information Modeling; Springer International Publishing: Berlin, Germany, 2015. [Google Scholar]
- Borrmann, A. From GIS to BIM and back again—A spatial query language for 3D building models and 3D city models. In Proceedings of the 5th International 3D Geoinfo Conference, Berlin, Germany, 3–4 November 2010. [Google Scholar]
- Reshetyuk, Y. Terrestrial Laser Scanning: Error Sources, Self Calibration and Direct Georeferencing; VDM: Stockholm, Sweden, 2009. [Google Scholar]
- El-Mekawy, M.; Östman, A.; Hijazi, I. A Unified Building Model for 3D Urban GIS. IJGI 2012, 1, 120–145. [Google Scholar] [CrossRef] [Green Version]
- Dave, B.; Buda, A.; Nurminen, A.; Främling, K. A framework for integrating BIM and IoT through open standards. Autom. Constr. 2018, 95, 35–45. [Google Scholar] [CrossRef]
- Hor, A.-H.; Sohn, G.; Claudio, P.; Jadidi, M.; Afnan, A. A Semantic Graph Database For Bim-Gis Integrated Information Model for an Intelligent Urban Mobility Web Application. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Irizarry, J.; Karan, E.P.; Jalaei, F. Integrating BIM and GIS to improve the visual monitoring of construction supply chain management. Autom. Constr. 2013, 31, 241–254. [Google Scholar] [CrossRef]
- Amirebrahimi, S.; Rajabifard, A.; Mendis, P.; Ngo, T. A BIM-GIS integration method in support of the assessment and 3D visualisation of flood damage to a building. J. Spat. Sci. 2016, 61, 317–350. [Google Scholar] [CrossRef]
- Kang, T.W.; Hong, C.H. A study on software architecture for effective BIM/GIS-based facility management data integration. Autom. Constr. 2015, 54, 25–38. [Google Scholar] [CrossRef]
- Fosu, R.; Suprabhas, K.; Rathore, Z.; Cory, C. Integration of Building Information Modeling (BIM) and Geographic Information Systems (GIS)—A Literature Review and Future Needs. In Proceedings of the 32nd CIB W78 Conference 2015, Eindhoven, The Netherlands, 27–29 October 2015; p. 9. [Google Scholar]
- Geiger, A.; Benner, J.; Haefele, K.-H. Generalization of 3D IFC Building Models. In 3D Geoinformation Science; Springer: Cham, Switzerland, 2015; pp. 19–35. [Google Scholar]
- Alexandrov, P.S. Diskrete Räume. Matematicheskii Sbornik 1937, 501–518. [Google Scholar]
- Egenhofer, M.J. Reasoning about binary topological relations. In Advances in Spatial Databases; Günther, O., Schek, H.-J., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; Volume 525, pp. 141–160. ISBN 978-3-540-54414-2. [Google Scholar]
- Winter, S.; Frank, A.U. Topology in Raster and Vector Representation. GeoInformatica 2000, 4, 35–65. [Google Scholar] [CrossRef]
- Ozel, F. Spatial databases and the analysis of dynamic processes in buildings. In Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia, Singapore, 18–19 May 2000; Volume 2, pp. 97–106. [Google Scholar]
- Kohler, N.; Lockemann, P. Arbeits- und Entwicklungsbericht: Planungsplattform für Dynamische Gebäude; Institut für industrielle Bauproduktion (IFIB): Karlsruhe, Germany, 2003. [Google Scholar]
- Boguslawski, P.; Mahdjoubi, L.; Zverovich, V.; Fadli, F.; Barki, H. BIM-GIS Modelling in Support of Emergency Response Applications. WIT Trans. Built Environ. 2015, 149, 381–391. [Google Scholar]
- Liu, L.; Li, B.; Zlatanova, S.; Liu, H. The Path from Bim to a 3d Indoor Framework—A Requirement Analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–4, 373–378. [Google Scholar]
- Breunig, M. On the Way to Component-Based 3D/4D Geoinformation Systems; Lecture Notes in Earth Sciences; Springer International Publishing: Berlin, Germany, 2001; Volume 94. [Google Scholar]
- Bradley, P.E.; Paul, N. Using the Relational Model to Capture Topological Information of Spaces. Comput. J. 2010, 53, 69–89. [Google Scholar] [CrossRef]
- Lienhardt, P. N-Dimensional Generalized Combinatorial Maps and Cellular Quasi-Manifolds. Int. J. Comput. Geom. Appl. 1994, 4, 275–324. [Google Scholar] [CrossRef]
- Bradley, P.E.; Paul, N. Comparing G-maps with other topological data structures. Geoinformatica 2014, 18, 595–620. [Google Scholar] [CrossRef]
- Paul, N. Topologische Datenbanken für Architektonische Räume. Ph.D. Thesis, Universität Karlsruhe, Karlsruhe, Germany, 2008. [Google Scholar]
- Vitalis, S.; Ohori, K.; Stoter, J. Incorporating Topological Representation in 3D City Models. IJGI 2019, 8, 347. [Google Scholar] [CrossRef] [Green Version]
- Sagan, H. Space Filling Curves; Springer: New York, NY, USA, 1994. [Google Scholar] [CrossRef]
- Guan, X.; van Oosterom, P.; Cheng, B. A Parallel N-Dimensional Space-Filling Curve Library and Its Application in Massive Point Cloud Management. IJGI 2018, 7, 327. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Shan, J. Space filling curve based point clouds index. In Proceedings of the 8th International Conference on GeoComputation, Ann Arbor, MI, USA, 31 July–3 August 2005; pp. 551–562. [Google Scholar]
- Van Oosterom, P.; Martinez-Rubi, O.; Ivanova, M.; Horhammer, M.; Geringer, D.; Ravada, S.; Tijssen, T.; Kodde, M.; Gonçalves, R. Massive point cloud data management: Design, implementation and execution of a point cloud benchmark. Comput. Graph. 2015, 49, 92–125. [Google Scholar] [CrossRef]
- Sirdeshmukh, N.; Verbree, E.; Oosterom, P.V.; Psomadaki, S.; Kodde, M. Utilizing a Discrete Global Grid System for Handling Point Clouds with Varying Locations, Times, and Levels of Detail. Cartographica: Int. J. Geogr. Inf. Geovis. 2019, 54, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Langran, G.; Stuart, N. Time in Geographic Information Systems. Int. J. Geograph. Inf. Syst. 1992, 6, 547. [Google Scholar] [CrossRef]
- Le, H.H.; Gabriel, P.; Gietzel, J.; Schaeben, H. An object-relational spatio-temporal geoscience data model. Comput. Geosci. 2013, 57, 104–115. [Google Scholar] [CrossRef]
- Le, H.H.; Schaeben, H.; Jasper, H.; Görz, I. Database Versioning and its Implementation in Geoscience Information Systems. Comput. Geosci. 2014, 70, 44–54. [Google Scholar] [CrossRef]
- Le, H.H. Spatio-temporal Information System for the Geosciences: Concepts, Data models, Software, and Applications. Ph.D. Thesis, Technische Universität Bergakademie Freiberg, Freiberg, Germany, 2014. [Google Scholar]
- Gabriel, P.; Gietzel, J.; Le, H.H.; Schaeben, H. GST: A Network Based Datastore for Geoscience Data and Geomodels and its Implementation—ProMine’s Contribution Towards Interoperability. In 3D, 4D and Predictive Modelling of Major Mineral Belts in Europe; Weihed, P., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 59–71. ISBN 978-3-319-17427-3. [Google Scholar]
- Breunig, M.; Schilberg, B.; Thomsen, A.; Kuper, P.V.; Jahn, M.; Butwilowski, E. DB4GeO, a 3D/4D Geodatabase and Its Application for the Analysis of Landslides. In Geographic Information and Cartography for Risk and Crisis Management; Konecny, M., Zlatanova, S., Bandrova, T.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 83–101. ISBN 978-3-642-03441-1. [Google Scholar]
- Breunig, M.; Kuper, P.V.; Butwilowski, E.; Thomsen, A.; Jahn, M.; Dittrich, A.; Al-Doori, M.; Golovko, D.; Menninghaus, M. The story of DB4GeO—A service-based geo-database architecture to support multi-dimensional data analysis and visualization. ISPRS J. Photogramm. Remote Sens. 2016, 117, 187–205. [Google Scholar] [CrossRef]
- Hopf, H.; Alexandroff, P. Topologie; Springer International Publishing: Berlin, Germany, 1935; p. 158. [Google Scholar]
- Kuper, P.V. Efficient and Practical Handling of Spatio-Temporal Data Based on Time-Dependent Net Components. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–4, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Dutton, G.H. A Hierarchical Coordinate System for Geoprocessing and Cartography, Lecture Notes in Earth Sciences; Springer: New York, NY, USA, 1999. [Google Scholar]
- Peuquet, D.J. A Conceptual Framework and Comparison of Spatial Data Models. Cartogr. Int. J. Geogr. Inf. Geovis. 1984, 21, 66–113. [Google Scholar] [CrossRef] [Green Version]
- Mallet, J.L. Geomodeling; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Langran, G.; Chrisman, N.R. A Framework for Temporal Geographic Information. Cartographica 1988, 25, 1–14. [Google Scholar] [CrossRef]
- Worboys, M. A generic model for planar geographical objects. Int. J. Geogr. Inf. Syst. 1992, 6, 353–372. [Google Scholar] [CrossRef]
- Mallet, J.L. GOCAD: A computer aided design program for geological applications. In Three-Dimensional Modeling with Geoscientific Information Systems; Turner, A.K., Ed.; NATO ASI; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; Volume 354, pp. 123–142. [Google Scholar]
- Thomsen, A.; Breunig, M.; Butwilowski, E. Towards the Unified Modelling and Management of Topology in Multiple Representation Databases. Schweizerbart’sche Verlagsbuchhandlung 2008, 3, 176–185. [Google Scholar]
- Yao, Z.; Nagel, C.; Kunde, F.; Hudra, G.; Willkomm, P.; Donaubauer, A.; Adolphi, T.; Kolbe, T.H. 3DCityDB—A 3D geodatabase solution for the management, analysis, and visualization of semantic 3D city models based on CityGML. Open Geospat. Data Softw. Stand. 2018, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Kolbe, T.H. A new Approach to Model Transformation using Graph Transformation System. In PFGK18-Photogrammetrie-Fernerkundung-Geoinformatik-Kartographie, 37. Jahrestagung in München 2018; Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V.: Munich, Germany, 2018; pp. 831–834. [Google Scholar]
- 3dcitydb. Available online: https://github.com/3dcitydb/3dcitydb (accessed on 12 November 2019).
- Peterson, M.P. (Ed.) Online Maps with APIs and WebServices; Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-27484-8. [Google Scholar]
- Stefanakis, E. Web mercator and raster tile maps: Two cornerstones of online map service providers. Geomatica 2017, 71, 100–109. [Google Scholar] [CrossRef]
- Keates, J.S. Cartographic Design and Production, 2nd ed.; Longman Scientific & Technical: Harlow, Essex, UK; Wiley: New York, NY, USA, 1989; ISBN 978-0-582-30133-7. [Google Scholar]
- Robinson, A.H.; Morrison, J.L.; Muehrcke, P.C.; Kimerling, A.J.; Guptill, S.C. Elements of cartography, 6th ed.; John Wiley & Sons: New York, NY, USA, 1995; ISBN 978-0-471-55579-7. [Google Scholar]
- Goodchild, M.F. Reimagining the history of GIS. Ann. GIS 2018, 24, 1–8. [Google Scholar] [CrossRef]
- Purss, M. Topic 21: Discrete Global Grid Systems Abstract Specification. Available online: http://docs.opengeospatial.org/as/15-104r5/15-104r5.html (accessed on 12 November 2019).
- OGC. OGC Announces a New Standard that Improves the Way Information Is Referenced to the Earth. Available online: https://www.opengeospatial.org/pressroom/pressreleases/2656 (accessed on 12 November 2019).
- OGC. Vector Tiles Pilot. Available online: https://www.opengeospatial.org/projects/initiatives/vt-pilot-2018 (accessed on 13 November 2019).
- ICA Commission on Generalisation and Multiple Representation. Available online: https://generalisation.icaci.org/ (accessed on 30 December 2019).
- Annapurna, S.; Teja, P.K.V.S.; Murty, S. A Comparative Study on Mobile Platforms (Android vs. IOS). Int. J. Adv. Res. Comput. Eng. Technol. IJARCET 2016, 5, 547–553. [Google Scholar]
- Nittel, S. A Survey of Geosensor Networks: Advances in Dynamic Environmental Monitoring. Sensors 2009, 9, 5664–5678. [Google Scholar] [CrossRef]
- Huber, D. Background Positioning for Mobile Devices—Android vs. iPhone; Technical Report; School of Electrical and Computer Engineering: Berlin, Germany, 2011; p. 7. [Google Scholar]
- Söderholm, S.; Bhuiyan, M.Z.H.; Thombre, S.; Ruotsalainen, L.; Kuusniemi, H. A Multi-GNSS Software-Defined Receiver: Design, Implementation, and Performance Benefits. Ann. Telecommun. 2016, 71, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Sauerländer-Biebl, A.; Brockfeld, E.; Suske, D.; Melde, E. Evaluation of a transport mode detection using fuzzy rules. Transp. Res. Procedia 2017, 25, 591–602. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.D.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Jara, A.J.; Olivieri, A.C.; Bocchi, Y.; Jung, M.; Kastner, W.; Skarmeta, A.F. Semantic Web of Things: An analysis of the application semantics for the IoT moving towar the IoT convergence. IJWGS 2014, 10, 244–272. [Google Scholar] [CrossRef]
- Chen, F.; Deng, P.; Wan, J. Data Mining for the Internet of Things: Literature Review and Challenges. Int. J. Distrib. Sens. Netw. 2015. [Google Scholar] [CrossRef] [Green Version]
- Tao, F.; Cheng, Y.; Da Xu, L.; Zhang, L.; Li, B.H. CCIoT-CMfg: Cloud Computing and Internet of Things-Based Cloud Manufacturing Service System. IEEE Trans. Ind. Inf. 2014, 10, 1435–1442. [Google Scholar]
- Bahrepour, M.; Meratnia, N.; Havinga, P. Automatic Fire Detection: A Survey from Wireless Network Perspective; Technical Report TR-CTIT-08-73; Centre for Telematics and Information Technology, University of Twente: Enschede, The Netherlands, 2008; ISSN 1381-362513p. [Google Scholar]
- Muller, C.; Chapman, L.; Grimmond, C.S.B.; Young, D.; Cai, X. Sensors and the City: A Review of Urban Meteorological Networks. Int. J. Climatol. 2013, 33, 1585–1600. [Google Scholar] [CrossRef]
- Moeller, A.K.; Lukacs, P.M.; Horne, J.S. Three Novel Methods to Estimate Abundance of Unmarked Animals Using Remote Cameras. Ecosphere 2018, 9, e02331. [Google Scholar] [CrossRef] [Green Version]
- Eldawy, A.; Mokbel, M.F. SpatialHadoop: A mapreduce framework for spatial data. In Proceedings of the 2015 IEEE 31st International Conference on Data Engineering, Seoul, Korea, 13–17 April 2015. [Google Scholar]
- Alarabi, L.; Mokbel, M.F.; Musleh, M. ST-Hadoop: A mapreduce framework for spatio-temporal data. Geoinformatica 2018, 22, 785–813. [Google Scholar] [CrossRef]
- Aji, A.; Wang, F.; Vo, H.; Lee, R.; Liu, Q.; Zhang, X.; Saltz, J. Hadoop GIS: A high performance spatial data warehousing system over mapreduce. Proc. VLDB Endow. 2013, 6, 1009–1020. [Google Scholar] [CrossRef]
- Günther, W.A.; Mehrizi, M.H.R.; Huysman, M.; Feldberg, F. Debating Big Data: A Literature Review on Realizing Value From Big Data. J. Strateg. Inf. Syst. 2017, 26, 191–209. [Google Scholar] [CrossRef]
- Raifer, M.; Troilo, R.; Kowatsch, F.; Auer, M.; Loos, L.; Marx, S.; Przybill, K.; Fendrich, S.; Mocnik, F.B.; Zipf, A. OSHDB: A Framework for Spatio-Temporal Analysis of OpenstreetMap History Data. Open Geospat. Data Softw. Stand. 2019, 4, 3. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Zipf, A.; Mooney, P.; Helbich, M. (Eds.) OpenStreetMap in GIScience—Experiences, Research, and Applications, Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2015; p. 325. [Google Scholar]
- Berners-Lee, T. Linked Open Data. 2006. Available online: https://www.w3.org/DesignIssues/LinkedData.html (accessed on 3 February 2020).
- Goodchild, M.F. Citizens as sensors: The world of volunteered geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Elwood, S. Volunteered geographic information: Key questions, concepts and methods to guide emerging research and practice. GeoJournal 2008, 72, 133–135. [Google Scholar] [CrossRef]
- Elwood, S. Volunteered geographic information: Future research directions motivated by critical, participatory, and feminist GIS. GeoJournal 2008, 72, 173–183. [Google Scholar] [CrossRef]
- Chilton, S. CrowdSourcing is radically changing the geodata landscape: Case study of OpenStreetMap. In Proceedings of the 24th International Cartographic Conference, Santiago, Chile, 15–21 November 2009. [Google Scholar]
- Steiger, E.; Resch, B.; Zipf, A. Exploration of spatiotemporal and semantic clusters of Twitter data using unsupervised neural networks. Int. J. Geogr. Inf. Sci. 2016, 30, 1694–1716. [Google Scholar] [CrossRef]
- Goodchild, M.F.; Glennon, J.A. Crowdsourcing Geographic Information for Disaster Response: A Research Frontier. Int. J. Digit. Earth 2010, 3, 231–241. [Google Scholar] [CrossRef]
- Dhar, V. Data science and prediction. Commun. ACM 2013, 56, 64–73. [Google Scholar] [CrossRef]
- Agarwal, R.; Dhar, V. Big data, data science, and analytics: The opportunity and challenge for IS research. IS Res. J. 2014, 25, 443–448. [Google Scholar] [CrossRef]
- Omoniwa, B.; Hussain, R.; Javed, M.A.; Bouk, S.H. Fog/Edge Computing-based IoT (FECiOT): Architecture, Applications, and Research Issues. IEEE Internet Things J. 2018. [Google Scholar] [CrossRef]
- Meijer, A.; Bolivar, M.P.R. Governing the Smart City: A Review of the Literature on Smart Urban Governance. Int. Rev. Adm. Sci. 2016, 82, 392–408. [Google Scholar] [CrossRef]
- Enders, M.R.; Hoßbach, N. Dimensions of Digital Twin Applications—A Literature Review. In Proceedings of the 25th Americas Conference on Information Systems, Cancún, Mexico, 15–17 August 2019; p. 10. [Google Scholar]
- Bradley, P.E.; Paul, N. Topologically consistent space, time, version, and scale using Alexandrov topologies. In Contemporary Strategies and Approaches in 3-D Information Modeling; IGI Global: Pershey (PA), USA, 2018; pp. 52–82. [Google Scholar]
- Ji, Q.; Barr, S.; James, P.; Fairbairn, D. A Geospatial Analysis Framework for Fine Scale Urban Infrastructure Networks. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–4, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Giovanella, A.; Bradley, P.E.; Wursthorn, S. Evaluation of Topological Consistency in CityGML. IJGI 2019, 8, 278. [Google Scholar] [CrossRef] [Green Version]
- Arioli, M.; Benzi, M. A finite element method for quantum graphs. IMA J. Numer. Anal. 2018, 38, 1119–1163. [Google Scholar] [CrossRef] [Green Version]
- Gelinas, U.J.; Sutton, S.G.; Fedorowicz, J. Online Transaction Processing. In Open Textbooks for Hong Kong; Open University of Hong Kong: Hong Kong, China, 2019. [Google Scholar]
- Conn, S.S. OLTP and OLAP data integration: A Review of Feasible Implementation Methods and Architectures for Real Time Data Analysis. In Proceedings of the IEEE Southeast Conference, Ft. Lauderdale, FL, USA, 8–10 April 2005; p. 6. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, Y.; Griffin, T. Querying Geospatial Data Streams in SECONDO. In Proceedings of the 17th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems (ACM-GIS 2009), Seattle, WA, USA, 4–6 November 2009. [Google Scholar] [CrossRef]
- Bauer, A.; Wissink, A.; Potsdam, M.; Jayaraman, B. ParaView Catalyst Computes Particle Paths In Situ. Kitware Blog 2016, 39. [Google Scholar]
- BIG DATA: Techniques and Technologies in Geoinformatics; Karimi, H.A. (Ed.) CRC Press: Boca Raton, FL, USA, 2014; 312p, ISBN 978-1-138-07319-7. [Google Scholar]
- VoPham, T.; Hart, J.E.; Laden, F.; Chiang, Y.-Y. Emerging Trends in Geospatial Artificial Intelligence (geoAI): Potential Applications for Environmental Epidemiology. Environ. Health 2018, 17, 40. [Google Scholar] [CrossRef]
- Breunig, M.; Zlatanova, S. 3D geo-database research: Retrospective and future directions. Comput. Geosci. 2011, 37, 791–803. [Google Scholar] [CrossRef]
- Balovnev, O.; Breunig, M.; Cremers, A.B. Geotoolkit: Opening Access to Object-Oriented Geodata Stores. In Interoperating Geographic Information Systems; Goodchild, M., Egenhofer, M., Fegeas, R., Kottman, C., Eds.; Springer: Boston, MA, USA, 1999; pp. 235–247. ISBN 978-1-4613-7363-6. [Google Scholar]
- Güting, R.H. GraphDB: Modeling and Querying Graphs in Databases. In Proceedings of the 20th International Conference on Very Large Data Bases, Santiago de Chile, Chile, 12–25 September 1994; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1994; pp. 297–308. [Google Scholar]
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach; Prentice Hall Series in Artificial Intelligence; Prentice Hall: Englewood Cliffs, NJ, USA, 1995; ISBN 978-0-13-103805-9. [Google Scholar]
- Baader, F.; Nutt, W. Basic description logics. In The Description Logic Handbook. Theory, Implementation and Applications; Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., Eds.; Cambridge University Press: Cambridge, UK, 2003; pp. 43–95. [Google Scholar]
- Rudas, I.; Fodor, J. Intelligent systems. Int. J. Comput. Commun. Control 2008, 3, 132–138. [Google Scholar]
- Li, L.; Li, S.; Zhao, S. QoS-Aware Scheduling of Services-Oriented Internet of Things. IEEE Trans. Ind. Inf. 2014, 10, 1497–1505. [Google Scholar]
- Viriyasitavat, W.; Xu, L.D. Compliance Checking for Requirement-Oriented Service Workflow Interoperations. IEEE Trans. Ind. Inf. 2014, 10, 1469–1477. [Google Scholar] [CrossRef]
- He, L.; Yue, P.; Jiang, L.; Zhang, M. Fuzzy spatial relation ontology driven detection of complex geospatial features in a web service environment. Earth Sci. Inf. 2015, 8, 63–76. [Google Scholar] [CrossRef]
- Yuan, J.; Yue, P.; Gong, J.; Zhang, M. A Linked Data Approach for Geospatial Data Provenance. IEEE Trans. Geosci. Remote Sens. 2013, 51, 5105–5112. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breunig, M.; Bradley, P.E.; Jahn, M.; Kuper, P.; Mazroob, N.; Rösch, N.; Al-Doori, M.; Stefanakis, E.; Jadidi, M. Geospatial Data Management Research: Progress and Future Directions. ISPRS Int. J. Geo-Inf. 2020, 9, 95. https://doi.org/10.3390/ijgi9020095
Breunig M, Bradley PE, Jahn M, Kuper P, Mazroob N, Rösch N, Al-Doori M, Stefanakis E, Jadidi M. Geospatial Data Management Research: Progress and Future Directions. ISPRS International Journal of Geo-Information. 2020; 9(2):95. https://doi.org/10.3390/ijgi9020095
Chicago/Turabian StyleBreunig, Martin, Patrick Erik Bradley, Markus Jahn, Paul Kuper, Nima Mazroob, Norbert Rösch, Mulhim Al-Doori, Emmanuel Stefanakis, and Mojgan Jadidi. 2020. "Geospatial Data Management Research: Progress and Future Directions" ISPRS International Journal of Geo-Information 9, no. 2: 95. https://doi.org/10.3390/ijgi9020095
APA StyleBreunig, M., Bradley, P. E., Jahn, M., Kuper, P., Mazroob, N., Rösch, N., Al-Doori, M., Stefanakis, E., & Jadidi, M. (2020). Geospatial Data Management Research: Progress and Future Directions. ISPRS International Journal of Geo-Information, 9(2), 95. https://doi.org/10.3390/ijgi9020095