A Modeling Method for Automatic Extraction of Offshore Aquaculture Zones Based on Semantic Segmentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Processing
- (1)
- Ordinary image expansion: The image rotation (60°, 90°, 120°, and other angles) and adding random Gaussian noise into the image showing the expansion result is presented in Figure 2.
2.2. Model Training
2.2.1. OAE-V3 Network
- (1)
- (2)
- Atrous convolution. In image semantic segmentation, the convolution neural network [33] extracts features by pooling layers to reduce the image scale, which would increase the receptive field. The final images with smaller sampling operation will need to restore the original size. This situation creates a problem—that is, the pooling operation could lose many details. To solve this problem, atrous convolution was introduced to the field of image segmentation [34]. The so-called atrous sampling is based on the original image, and the sampling frequency is set according to the rate parameter (atrous size). When rate = 1, the convolution operation is the standard convolution operation, as shown in Figure 6a. When rate > 1, sampling every pixel is done at the rate on the original image. Figure 6b shows the convolution operation when rate = 2.
- (3)
- Atrous space pyramidization pooling. ASPP uses atrous convolution with different sampling rates and batch normalization [35] to form an atrous convolution cascade structure, which can effectively capture multiscale information.
2.2.2. Training
2.3. Prediction Extraction of Aquaculture
2.4. Prediction Evaluation
2.5. Data
3. Results and Discussion
3.1. Analysis of the Data Expansion
3.2. Analysis of the Bands
3.3. Comparative Analysis of Multiple Supervised Classification Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lipton, D.W.; Kim, D.H. Assessing the economic viability of offshore aquaculture in korea: An evaluation based on rock bream, oplegnathus fasciatus, production. J. World Aquacult. Soc. 2007, 38, 506–515. [Google Scholar] [CrossRef]
- Al-Nasrawi, A.K.M.; Hopley, C.A.; Hamylton, S.M.; Jones, B.G. A Spatio-Temporal Assessment of Landcover and Coastal Changes at Wandandian Delta System, Southeastern Australia. J. Mar. Sci. Eng. 2017, 5, 55. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.G.; Sequeira, A.; Hawkins, A.J.S.; Newton, A.; Nickell, T.D.; Pastres, R.; Forte, J.; Bricker, S.B. Analysis of coastal and offshore aquaculture: Application of the FARM model to multiple systems and shellfish species. Aquaculture 2009, 292, 129–138. [Google Scholar] [CrossRef]
- Dai, H.; Bao, Y.; Bao, M. Maximum likelihood estimate for the dispersion parameter of the negative binomial distribution. Stat. Probab. Lett. 2013, 83, 21–27. [Google Scholar] [CrossRef]
- Forney, G. Generalized minimum distance decoding. IEEE Trans. Inf. Theory 1966, 12, 125–131. [Google Scholar] [CrossRef]
- Chen, C.W.; Luo, J.; Parker, K.J. Image segmentation via adaptive k-mean clustering and knowledge-based morphological operations with biomedical applications. IEEE Trans. Image Process. 1998, 7, 1673–1683. [Google Scholar] [CrossRef] [Green Version]
- Heermann, P.D.; Khazenie, N. Classification of multispectral remote sensing data using a back-propagation neural network. IEEE Trans. Geosci. Remote Sens. 1992, 30, 81–88. [Google Scholar] [CrossRef]
- Shih-Chung, B.L.; Freedman, M.T.; Lin, J.S.; Mun, S.K. Automatic lung nodule detection using profile matching and back-propagation neural network techniques. J. Digit. Imaging 1993, 6, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Saunders, C.; Stitson, M.O.; Weston, J.; Holloway, R.; Bottou, L.; Scholkopf, B. Support vector machine. Comput. Intell. Neurosci. 2002, 1, 1–28. [Google Scholar]
- Zhou, X.D.; Yang, C.C.; Meng, N.N. Method of remote sensing image fine classification based on geometric features and svm. Constr. Build. Mater. 2012, 500, 562–568. [Google Scholar] [CrossRef]
- Maulik, U.; Bandyopadhyay, S. Genetic algorithm-based clustering technique. Pattern Recognit. 2000, 33, 1455–1456. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, Y.; Ju, Z.; Wang, J.; Zhao, L. Remote sensing image classification by the chaos genetic algorithm in monitoring land use changes. Math. Comput. Model 2010, 51, 1408–1416. [Google Scholar]
- Bianchini, M.; Scarselli, F. On the Complexity of Neural Network Classifiers: A Comparison between Shallow and Deep Architectures. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 1553–1565. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2012, 60, 84–90. [Google Scholar] [CrossRef]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 2016, 55, 645–657. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.W.; Tao, C.S. Polsar image classification using polarimetric-feature-driven deep convolutional neural network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 627–631. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, D.; Wang, R.; Su, W. Offshore aquatic farming areas extraction method based on aster data. Trends Parasitol. 2010, 2011, 59–63. [Google Scholar]
- Zhang, T.; Li, Q.; Yang, X.; Zhou, C.; Su, F. Automatic mapping aquaculture in coastal zone from TM imagery with OBIA approach. Int. Geol. Rev. 2010, 2, 1–4. [Google Scholar]
- Lu, Y.; Li, Q.; Du, X.; Wang, H.; Liu, J. A method of coastal aquaculture area automatic extraction with high spatial resolution images. Remote Sens. Technol. Appl. 2015, 30, 486–494. [Google Scholar]
- Fan, J.; Chu, J.; Jie, G.; Zhang, F. Floating raft aquaculture information automatic extraction based on high resolution SAR images. IEEE Int. Geosci. Remote Sens. Symp. 2015. [Google Scholar] [CrossRef]
- Geng, J.; Fan, J.; Chu, J.; Wang, H. Research on marine floating raft aquaculture sar image target recognition based on deep collaborative sparse coding network. Acta Autom. Sin. 2016, 42, 593–604. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 39, 640–651. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef] [Green Version]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets and fully connected crfs. Comput. Intell. Neurosci. 2014, 4, 357–361. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 833–851. [Google Scholar]
- Zhang, Z.; Huang, J.; Jiang, T.; Sui, B.K.; Pan, X.L. Semantic segmentation of very high-resolution remote sensing image based on multiple band combinations and patchwise scene analysis. J. Appl. Remote Sens. 2020, 14, 016502. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Bing, X.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii, HI, USA, 21–26 July 2017; pp. 5967–5976. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2015; pp. 770–778. [Google Scholar]
- Li, H.; Lin, Z.; Shen, X.; Brandt, J.; Hua, G. A convolutional neural network cascade for face detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5325–5334. [Google Scholar] [CrossRef]
- Papandreou, G.; Kokkinos, I.; PierreAndré, S. Modeling Local and Global Deformations in Deep Learning: Epitomic Convolution, Multiple Instance Learning, and Sliding Window Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 390–399. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015. [Google Scholar]
- Siskind, J.M.; Morris, Q. A maximum-likelihood approach to visual event classification. IET Comput. Vis. 1996, 96, 347–360. [Google Scholar]
- Dreiseitla, S.; Ohno-Machadob, L. Logistic regression and artificial neural network classification models: A methodology review. J. Biomed. Inform. 2002, 35, 352–359. [Google Scholar] [CrossRef] [Green Version]
Method | Accuracy of Fish Steak Cage | Accuracy of Floating Raft | Pre_pixel | F1 Score | Kappa |
---|---|---|---|---|---|
MLE | 69.8% | 23.9% | 57.6% | 58% | 0.399 |
NN | 74.1% | 33.8% | 72.9% | 69% | 0.547 |
CNN | 82.1% | 35.8% | 76.8% | 74% | 0.615 |
FCN | 90.5% | 89.7% | 92.5% | 91% | 0.885 |
OAE-V3 | 94.5% | 92.0% | 94.8% | 93% | 0.925 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, B.; Jiang, T.; Zhang, Z.; Pan, X.; Liu, C. A Modeling Method for Automatic Extraction of Offshore Aquaculture Zones Based on Semantic Segmentation. ISPRS Int. J. Geo-Inf. 2020, 9, 145. https://doi.org/10.3390/ijgi9030145
Sui B, Jiang T, Zhang Z, Pan X, Liu C. A Modeling Method for Automatic Extraction of Offshore Aquaculture Zones Based on Semantic Segmentation. ISPRS International Journal of Geo-Information. 2020; 9(3):145. https://doi.org/10.3390/ijgi9030145
Chicago/Turabian StyleSui, Baikai, Tao Jiang, Zhen Zhang, Xinliang Pan, and Chenxi Liu. 2020. "A Modeling Method for Automatic Extraction of Offshore Aquaculture Zones Based on Semantic Segmentation" ISPRS International Journal of Geo-Information 9, no. 3: 145. https://doi.org/10.3390/ijgi9030145
APA StyleSui, B., Jiang, T., Zhang, Z., Pan, X., & Liu, C. (2020). A Modeling Method for Automatic Extraction of Offshore Aquaculture Zones Based on Semantic Segmentation. ISPRS International Journal of Geo-Information, 9(3), 145. https://doi.org/10.3390/ijgi9030145