Integration of Remote Sensing and GIS to Extract Plantation Rows from A Drone-Based Image Point Cloud Digital Surface Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. UAV Image Acquisition and Processing
2.3. DIPC Processing to Create DSM
2.4. Convolutional Filtering Image Transformation and Unsupervised Classification
2.5. GIS-Based Vectorization Smoothing and Completion
3. Results and Discussion
3.1. Plantation-Row Damage Assessment
3.2. Plantation-Row Extraction Assessment
3.2.1. Quantitative Evaluation
Completeness | (2) | |
Correctness | (3) | |
Quality | (4) | |
F1-Score | (5) |
3.2.2. A Comparative Assessment and State-of-the-Art
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bareja, B.G. What Is Row Planting and How Crops Are Arranged. Available online: https://www.cropsreview.com/row-planting.html (accessed on 5 March 2020).
- Winterhalter, W.; Fleckenstein, F.V.; Dornhege, C.; Burgard, W. Crop row detection on tiny plants with the pattern hough transform. IEEE Robot. Autom. Lett. 2018, 3, 3394–3401. [Google Scholar] [CrossRef]
- Smith, R.G.; Gross, K.L.; Robertson, G.P. Effects of Crop Diversity on Agroecosystem Function: Crop Yield Response. Ecosystems 2008, 11, 355–366. [Google Scholar] [CrossRef]
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wang, M.; Wang, N. Precision agriculture—A worldwide overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Barnes, A.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sánchez, B.; Vangeyte, J.; Fountas, S.; van der Wal, T.; Gómez-Barbero, M. Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy 2019, 80, 163–174. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Hassanein, M.; Khedr, M.; El-Sheimy, N. Crop Row Detection Procedure Using Low-Cost Uav Imagery System. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Khaliq, A.; Comba, L.; Biglia, A.; Ricauda, A.D.; Chiaberge, M.; Gay, P. Comparison of Satellite and UAV-Based Multispectral Imagery for Vineyard Variability Assessment. Remote Sens. 2019, 11, 436. [Google Scholar] [CrossRef] [Green Version]
- Ludovisi, R.; Tauro, F.; Salvati, R.; Khoury, S.; Mugnozza Scarascia, G.; Harfouche, A. UAV-based thermal imaging for high-throughput field phenotyping of black poplar response to drought. Front. Plant Sci. 2017, 8, 1681. [Google Scholar] [CrossRef]
- Watanabe, K.; Guo, W.; Arai, K.; Takanashi, H.; Kajiya-Kanegae, H.; Kobayashi, M.; Yano, K.; Tokunaga, T.; Fujiwara, T.; Tsutsumi, N. High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling. Front. Plant Sci. 2017, 8, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holman, F.; Riche, A.; Michalski, A.; Castle, M.; Wooster, M.; Hawkesford, M. High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens. 2016, 8, 1031. [Google Scholar] [CrossRef]
- Weiss, U.; Biber, P. Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Robot. Auton. Syst. 2011, 59, 265–273. [Google Scholar] [CrossRef]
- Galzki, J.C.; Birr, A.; Mulla, D. Identifying critical agricultural areas with three-meter LiDAR elevation data for precision conservation. J. Soil Water Conserv. 2011, 66, 423–430. [Google Scholar] [CrossRef]
- Madec, S.; Baret, F.; De Solan, B.; Thomas, S.; Dutartre, D.; Jezequel, S.; Hemmerlé, M.; Colombeau, G.; Comar, A. High-throughput phenotyping of plant height: Comparing unmanned aerial vehicles and ground LiDAR estimates. Front. Plant Sci. 2017, 8, 2002. [Google Scholar] [CrossRef] [Green Version]
- Mlambo, R.; Woodhouse, I.H.; Gerard, F.; Anderson, K. Structure from motion (SfM) photogrammetry with drone data: A low cost method for monitoring greenhouse gas emissions from forests in developing countries. Forests 2017, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Goodbody, T.R.; Coops, N.C.; Tompalski, P.; Crawford, P.; Day, K.J. Updating residual stem volume estimates using ALS-and UAV-acquired stereo-photogrammetric point clouds. Int. J. Remote Sens. 2017, 38, 2938–2953. [Google Scholar] [CrossRef]
- Manzo, M. Attributed Relational SIFT-based Regions Graph (ARSRG): Concepts and applications. arXiv 2019, arXiv:1912.09972. [Google Scholar]
- Bianco, S.; Ciocca, G.; Marelli, D. Evaluating the performance of structure from motion pipelines. J. Imaging 2018, 4, 98. [Google Scholar] [CrossRef] [Green Version]
- Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture. Remote Sens. 2013, 5, 5006–5039. [Google Scholar] [CrossRef] [Green Version]
- De Souza, C.H.W.; Lamparelli, R.A.C.; Rocha, J.V.; Magalhães, P.S.G. Height estimation of sugarcane using an unmanned aerial system (UAS) based on structure from motion (SfM) point clouds. Int. J. Remote Sens. 2017, 38, 2218–2230. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Watson, C. An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds. Remote Sens. 2012, 4, 1392–1410. [Google Scholar] [CrossRef] [Green Version]
- Wallace, L.; Lucieer, A.; Malenovský, Z.; Turner, D.; Vopěnka, P. Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests 2016, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Wenger, S.M.B. Evaluation of SfM against Tradional Stereophotogrammetry and LiDAR Techniques for DSM Creation in Various Land Cover Areas; Stellenbosch University: Stellenbosch, South Africa, 2016. [Google Scholar]
- McCabe, M.F.; Houborg, R.; Lucieer, A. High-resolution sensing for precision agriculture: From Earth-observing satellites to unmanned aerial vehicles. Proc. Remote Sens. Agric. Ecosyst. Hydrol. XVIII 2016. [Google Scholar] [CrossRef] [Green Version]
- Matese, A.; Di Gennaro, S.F.; Berton, A. Assessment of a canopy height model (CHM) in a vineyard using UAV-based multispectral imaging. Int. J. Remote Sens. 2017, 38, 2150–2160. [Google Scholar] [CrossRef]
- Goldbergs, G.; Maier, S.W.; Levick, S.R.; Edwards, A. Efficiency of individual tree detection approaches based on light-weight and low-cost UAS imagery in Australian Savannas. Remote Sens. 2018, 10, 161. [Google Scholar] [CrossRef] [Green Version]
- Enciso, J.; Maeda, M.; Landivar, J.; Avila, C.; Jung, J.; Chang, A. Unmanned Aerial System (UAS) for Precision Agriculture and Management Decisions. In Proceedings of the 2016 ASABE Annual International Meeting, Disneys Coronado Springs Resort, Orlando, FL, USA, 17–20 July 2016; p. 1. [Google Scholar]
- Brocks, S.; Bendig, J.; Bareth, G. Toward an automated low-cost three-dimensional crop surface monitoring system using oblique stereo imagery from consumer-grade smart cameras. J. Appl. Remote Sens. 2016, 10, 046021. [Google Scholar] [CrossRef] [Green Version]
- Järnstedt, J.; Pekkarinen, A.; Tuominen, S.; Ginzler, C.; Holopainen, M.; Viitala, R. Forest variable estimation using a high-resolution digital surface model. ISPRS J. Photogramm. 2012, 74, 78–84. [Google Scholar] [CrossRef]
- Pádua, L.; Adão, T.; Hruška, J.; Sousa, J.J.; Peres, E.; Morais, R.; Sousa, A. Very high resolution aerial data to support multi-temporal precision agriculture information management. Procedia Comput. Sci. 2017, 121, 407–414. [Google Scholar] [CrossRef]
- Soares, G.A.; Abdala, D.D.; Escarpinati, M. Plantation Rows Identification by Means of Image Tiling and Hough Transform. In Proceedings of the VISIGRAPP (4: VISAPP), Funchal, Portugal, 27–29 January 2018; pp. 453–459. [Google Scholar]
- Rabatel, G.; Delenne, C.; Deshayes, M. A non-supervised approach using Gabor filters for vine-plot detection in aerial images. Comput. Electron. Agric. 2008, 62, 159–168. [Google Scholar] [CrossRef]
- Louargant, M.; Jones, G.; Faroux, R.; Paoli, J.-N.; Maillot, T.; Gée, C.; Villette, S. Unsupervised classification algorithm for early weed detection in row-crops by combining spatial and spectral information. Remote Sens. 2018, 10, 761. [Google Scholar] [CrossRef] [Green Version]
- Varshney, V. Supervised and Unsupervised Learning for Plant and Crop Row Detection in Precision Agriculture; Kansas State University: Manhattan, KS, USA, 2017. [Google Scholar]
- Mortensen, A.K.; Dyrmann, M.; Karstoft, H.; Jørgensen, R.N.; Gislum, R. Semantic segmentation of mixed crops using deep convolutional neural network. In Proceedings of the CIGR 2016 World Congress, Aarhus, Denmark, 26 June 2016; p. 6. [Google Scholar]
- Ji, R.; Qi, L. Crop-row detection algorithm based on Random Hough Transformation. Math. Comput. Model. 2011, 54, 1016–1020. [Google Scholar] [CrossRef]
- Vidović, I.; Cupec, R.; Hocenski, Ž. Crop row detection by global energy minimization. Pattern Recognit. 2016, 55, 68–86. [Google Scholar] [CrossRef]
- Delenne, C.; Durrieu, S.; Rabatel, G.; Deshayes, M.; Bailly, J.S.; Lelong, C.; Couteron, P. Textural approaches for vineyard detection and characterization using very high spatial resolution remote sensing data. Int. J. Remote Sens. 2008, 29, 1153–1167. [Google Scholar] [CrossRef]
- Delenne, C.; Durrieu, S.; Rabatel, G.; Deshayes, M. A Local Fourier Transform approach for vine plot extraction from aerial images. In Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sens. Applications; Blaschke, T., Lang, S., Hay, G.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 443–456. [Google Scholar] [CrossRef]
- Bah, M.D.; Hafiane, A.; Canals, R. Deep learning with unsupervised data labeling for weed detection in line crops in UAV images. Remote Sens. 2018, 10, 1690. [Google Scholar] [CrossRef] [Green Version]
- Osco, L.P.; de Arruda, M.S.; Junior, J.M.; da Silva, N.B.; Ramos, A.P.M.; Moryia, É.A.S.; Imai, N.N.; Pereira, D.R.; Creste, J.E.; Matsubara, E.T. A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery. ISPRS J. Photogramm. 2020, 160, 97–106. [Google Scholar] [CrossRef]
- Basso, M.; de Freitas, E.P. A UAV guidance system using crop row detection and line follower algorithms. J. Intell. Robot. Syst. 2019, 97, 605–621. [Google Scholar] [CrossRef]
- Nolan, A.; Park, S.; Fuentes, S.; Ryu, D.; Chung, H. Automated detection and segmentation of vine rows using high resolution UAS imagery in a commercial vineyard. In Proceedings of the 21st International Congress on Modelling and Simulation, Gold Coast Convention and Exhibition Centre, Broadbeach, Australia, 29 November– December 2015; pp. 1406–1412. [Google Scholar]
- Alidoost, F.; Arefi, H. Comparison of UAS-Based Photogrammetry Software for 3d Point Cloud Generation: A Survey Over a Historical Site. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Corrigan, F. 12 Best Photogrammetry Software For 3D Mapping Using Drones. Available online: https://www.dronezon.com/learn-about-drones-quadcopters/drone-3d-mapping-photogrammetry-software-for-survey-gis-models/ (accessed on 9 January 2020).
- Rahaman, H.; Champion, E. To 3D or Not 3D: Choosing a Photogrammetry Workflow for Cultural Heritage Groups. Heritage 2019, 2, 112. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, J.; Singhania, A.; Caceres, J.; Slatton, K.; Starek, M.; Kumar, R. An Overview of Lidar Point Cloud Processing Software; GEM Center Report No. Rep_2007-12-001; University of Florida: Gainesville, FL, USA, 2007; Volume 27. [Google Scholar]
- Catalucci, S.; Marsili, R.; Moretti, M.; Rossi, G. Comparison between point cloud processing techniques. Measurement 2018, 127, 221–226. [Google Scholar] [CrossRef]
- Fletcher, R.S. Employing spatial information technologies to monitor biological control of saltcedar in West Texas. Geocarto Int. 2014, 29, 332–347. [Google Scholar] [CrossRef]
- Stankevich, S.A.; Lubskyi, M.S.; Mosov, S.P. Natural Color Aerial Imagery Superresolution with Bands Radiometric Conversion. In Proceedings of the 2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET), Kyiv, Ukraine, 2–5 July 2018; pp. 99–102. [Google Scholar]
- Abdi, E.; Mariv, H.S.; Deljouei, A.; Sohrabi, H. Accuracy and precision of consumer-grade GPS positioning in an urban green space environment. For. Sci. Technol. 2014, 10, 141–147. [Google Scholar] [CrossRef]
- Forlani, G.; Dall’Asta, E.; Diotri, F.; Cella, U.M.d.; Roncella, R.; Santise, M. Quality assessment of DSMs produced from UAV flights georeferenced with on-board RTK positioning. Remote Sens. 2018, 10, 311. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Liu, S.; Baret, F.; Hemerlé, M.; Comar, A. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens. Environ. 2017, 198, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. Photogramm. 2015, 108, 245–259. [Google Scholar] [CrossRef]
- Remondino, F.; Barazzetti, L.; Nex, F.; Scaioni, M.; Sarazzi, D. UAV photogrammetry for mapping and 3d modeling–current status and future perspectives. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 38, C22. [Google Scholar] [CrossRef] [Green Version]
- Zaque, W.B.B.; Quintana, H.A.R.; Fernandez, W.D. Automatic classification of point clouds obtained with different airborne sensors in UAV. In Proceedings of the Seventh International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019), Paphos, Cyprus, 18–21 March 2019; p. 1117415. [Google Scholar]
- Anders, N.; Valente, J.; Masselink, R.; Keesstra, S. Comparing Filtering Techniques for Removing Vegetation from UAV-Based Photogrammetric Point Clouds. Drones 2019, 3, 61. [Google Scholar] [CrossRef] [Green Version]
- Klápště, P.; Urban, R.; Moudrý, V. Ground Classification of Uav Image-Based Point Clouds Through Different Algorithms: Open Source vs Commercial Software. In Proceedings of the UAS 4 ENVIRO 2018, Split, Croatia, 25 May 2018; p. 4. [Google Scholar]
- Khosravipour, A.; Skidmore, A.K.; Isenburg, M. Generating spike-free digital surface models using LiDAR raw point clouds: A new approach for forestry applications. Int. J. Appl. Earth Obs. 2016, 52, 104–114. [Google Scholar] [CrossRef]
- Anders, N.; Masselink, R.; Keesstra, S.; Suomalainen, J. High-res digital surface modeling using fixed-wing UAV-based photogrammetry. In Proceedings of the Geomorphometry, Nanjing, China, 16–20 October 2013; pp. 16–20. [Google Scholar]
- Institute, E.S.R. ArcGIS 9 Documentation: Using ArcGIS 3D Analyst; ESRI: Redlands, CA, USA, 2004; Volume 19. [Google Scholar]
- Lindsay, J. The whitebox geospatial analysis tools project and open-access GIS. In Proceedings of the GIS Research UK 22nd Annual Conference, Glasgow, Portugal, 16–18 April 2014; pp. 16–18. [Google Scholar]
- Lee, Y.-S.; Koo, H.-S.; Jeong, C.-S. A straight line detection using principal component analysis. Pattern Recognit. Lett. 2006, 27, 1744–1754. [Google Scholar] [CrossRef]
- Dilts, T. Polygon to Centerline Tool for ArcGIS; University of Nevada Reno: Reno, NV, USA, 2015. [Google Scholar]
- Singh, Y.; Singh, B.; Timsina, J. Crop Residue Management For Nutrient Cycling and Improving Soil Productivity in Rice-Based Cropping Systems in the Tropics. Adv. Agron. 2005, 85, 269–407. [Google Scholar]
- Easton, Z.M.; Bock, E.; Collick, A.S. Factors When Considering an Agricultural Drainage System; University, V.S., Ed.; Communications and Marketing, College of Agriculture and Life Sciences: Blacksburg, Virginia, 2017; Volume 208. [Google Scholar]
- García-Santillán, I.D.; Montalvo, M.; Guerrero, J.M.; Pajares, G. Automatic detection of curved and straight crop rows from images in maize fields. Biosyst. Eng. 2017, 156, 61–79. [Google Scholar] [CrossRef]
- Ramesh, K.; Chandrika, N.; Omkar, S.; Meenavathi, M.; Rekha, V. Detection of rows in agricultural crop images acquired by remote sensing from a uav. Int. J. Image Graph. Signal Process. 2016, 8, 25. [Google Scholar]
- Comba, L.; Biglia, A.; Aimonino, D.R.; Gay, P. Unsupervised detection of vineyards by 3D point-cloud UAV photogrammetry for precision agriculture. Comput. Electron. Agric. 2018, 155, 84–95. [Google Scholar] [CrossRef]
- Higuti, V.A.; Velasquez, A.E.; Magalhaes, D.V.; Becker, M.; Chowdhary, G. Under canopy light detection and ranging-based autonomous navigation. J. Field Robot. 2019, 36, 547–567. [Google Scholar] [CrossRef]
- Bright, S. The Best Agisoft Photoscan Alternatives Based on Verified Products, Votes, Reviews and Other Factors. Available online: https://www.saashub.com/agisoft-photoscan-alternatives (accessed on 22 February 2020).
- Peña Barragán, J.M.; Kelly, M.; Castro, A.I.d.; López Granados, F. Object-based approach for crop row characterization in UAV images for site-specific weed management. In Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, 7–9 May 2012; p. 5. [Google Scholar]
Item | Description |
---|---|
Imaging sensor | Hasselblad-L1D-20c |
Shutter speed | 1/1000 |
Image count | 1452/1459 |
Orthomosaic image density | 4 images/pixel |
Image resolution | 5472 × 3648 (≈20MP) |
GSD orthomosaic | 1.07cm/px |
DIPC points | 2,80,84,916 |
Point spacing | 0.2 m |
UAV onboard GPS RMSE | 1.23 m |
Flying Altitude | Calculation Quality | Tie-Points | |
---|---|---|---|
Before Optimization | 48.2 m | High | 471,592 |
After Optimization | 49.9 m | High | 490,160 |
TP | FN | FP | |
---|---|---|---|
Compartment-A | 54.6 | 2.54 | 6.92 |
Compartment-B | 28.8 | 0.51 | 2.31 |
Compartment-C | 19.60 | 0.10 | 6.11 |
Completeness | Correctness | Quality | F1-Score | |
---|---|---|---|---|
Compartment-A | 0.88 | 0.95 | 0.85 | 0.91 |
Compartment-B | 0.92 | 0.98 | 0.91 | 0.94 |
Compartment-C | 0.76 | 0.99 | 0.75 | 0.85 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fareed, N.; Rehman, K. Integration of Remote Sensing and GIS to Extract Plantation Rows from A Drone-Based Image Point Cloud Digital Surface Model. ISPRS Int. J. Geo-Inf. 2020, 9, 151. https://doi.org/10.3390/ijgi9030151
Fareed N, Rehman K. Integration of Remote Sensing and GIS to Extract Plantation Rows from A Drone-Based Image Point Cloud Digital Surface Model. ISPRS International Journal of Geo-Information. 2020; 9(3):151. https://doi.org/10.3390/ijgi9030151
Chicago/Turabian StyleFareed, Nadeem, and Khushbakht Rehman. 2020. "Integration of Remote Sensing and GIS to Extract Plantation Rows from A Drone-Based Image Point Cloud Digital Surface Model" ISPRS International Journal of Geo-Information 9, no. 3: 151. https://doi.org/10.3390/ijgi9030151
APA StyleFareed, N., & Rehman, K. (2020). Integration of Remote Sensing and GIS to Extract Plantation Rows from A Drone-Based Image Point Cloud Digital Surface Model. ISPRS International Journal of Geo-Information, 9(3), 151. https://doi.org/10.3390/ijgi9030151