Oil Flow Analysis in the Maritime Silk Road Region Using AIS Data
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Study Data
3. Study Method
3.1. Data Preprocessing
3.2. Extraction of Ship Point Pairs Based on Ship Trajectory
3.3. Discrimination of the Oil Tanker Load Condition by the K-Means Clustering Method
4. Results and Discussion
4.1. Annual Variation in Oil Flow
4.2. Two-Way Annual Average Oil Flow
4.3. Daily, Monthly, and Seasonal Variation in Oil Flow
4.4. Events Corresponding to the Troughs in the Oil Flow
5. Conclusions
- The annual oil flow estimated from the AIS data is similar to the EIA data in terms of the value and variation trends, except for the Cape of Good Hope. The statistics, such as R2 and RMSE, show that the two sets of data are similar and have a strong correlation. The general directions of the oil flow in the four MOCs are consistent with the actual directions. Therefore, the framework proposed in this study is reliable.
- Compared with the EIA data, the daily, monthly, and seasonal oil flow estimated in this study has smaller timescales, which can provide more information. The cycles of the four MOCs differed greatly, but their trends are consistent with each other’s. Furthermore, there were two obvious troughs in the oil flow through the straits of Malacca and Hormuz.
- The two troughs in the straits of Malacca and Hormuz were consistent in terms of the duration and extent. We believe that the first trough in the Strait of Hormuz is related to the military activities of the U.S. within the Persian Gulf. The second trough is associated with the worldwide MERS outbreak that occurred in 2015. The troughs in the Strait of Malacca are related to the troughs in the Strait of Hormuz.
Author Contributions
Funding
Conflicts of Interest
References
- Jia, H. Scientific collaborations shine on Belt and Road. Natl. Sci. Rev. 2017, 4, 652–657. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y. Understanding China’s Belt & Road initiative: Motivation, framework and assessment. China Econ. Rev. 2016, 40, 314–321. [Google Scholar]
- Lai, L.; Guo, K. The performance of one belt and one road exchange rate: Based on improved singular spectrum analysis. Phys. A Stat. Mech. Appl. 2017, 483, 299–308. [Google Scholar] [CrossRef]
- Wan, C.; Yang, Z.; Zhang, D.; Yan, X.; Fan, S. Resilience in transportation systems: A systematic review and future directions. Transp. Rev. 2018, 38, 479–498. [Google Scholar] [CrossRef]
- Cheng, L.; Yan, Z.J.; Xiao, Y.J.; Chen, Y.M.; Zhang, F.L.; Li, M.C. Using big data to track marine oil transportation along the 21st-century Maritime Silk Road. Sci. China Technol. Sci. 2019, 62, 677–686. [Google Scholar] [CrossRef]
- Yan, Z.; Xiao, Y.; Cheng, L.; Chen, S.; Zhou, X.; Ruan, X.; Li, M.; He, R.; Ran, B. Analysis of global marine oil trade based on automatic identification system (AIS) data. J. Transp. Geogr. 2020, 83, 102637. [Google Scholar] [CrossRef]
- EIA. The Strait of Hormuz Is the World’s Most Important Oil Transit Chokepoint. Available online: https://www.eia.gov/todayinenergy/detail.php?id=39932 (accessed on 24 November 2019).
- EIA. World Oil Transit Chokepoints. Available online: https://www.eia.gov/beta/international/regions-topics.php?RegionTopicID=WOTC (accessed on 24 November 2019).
- Zhang, Z.X. China’s energy security, the Malacca dilemma and responses. Energy Policy 2011, 39, 7612–7615. [Google Scholar] [CrossRef]
- Faturechi, R.; Miller-Hooks, E. Measuring the performance of transportation infrastructure systems in disasters: A comprehensive review. J. Infrastruct. Syst. 2015, 21, 04014025. [Google Scholar] [CrossRef]
- Omer, M.; Mostashari, A.; Nilchiani, R.; Mansouri, M. A framework for assessing resiliency of maritime transportation systems. Marit. Policy Manag. 2012, 39, 685–703. [Google Scholar] [CrossRef]
- Leng, X.; Ji, K.; Yang, K.; Zou, H. A Bilateral CFAR Algorithm for Ship Detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1536–1540. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H. A hierarchical ship detection scheme for high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4173–4184. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, M.; Hu, Z. Real-Time Inland CCTV Ship Tracking. Math. Probl. Eng. 2018, 2018, 1205210. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.M.; Lee, K.H.; Nam, B.; Wu, Y. Study on Image-Based Ship Detection for AR Navigation. In Proceedings of the 2016 6th International Conference on IT Convergence and Security (ICITCS), Prague, Czech Republic, 26 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–4. [Google Scholar]
- Wang, H.; Zou, Z.; Shi, Z.; Li, B. Detecting ship targets in spaceborne infrared image based on modeling radiation anomalies. Infrared Phys. Technol. 2017, 85, 141–146. [Google Scholar] [CrossRef]
- Jiang, B.; Ma, X.; Lu, Y.; Li, Y.; Feng, L.; Shi, Z. Ship detection in spaceborne infrared images based on Convolutional Neural Networks and synthetic targets. Infrared Phys. Technol. 2019, 97, 229–234. [Google Scholar] [CrossRef]
- Misović, D.S.; Milić, S.D.; Durović, Ž.M. Vessel Detection Algorithm Used in a Laser Monitoring System of the Lock Gate Zone. IEEE Trans. Intell. Transp. Syst. 2016, 17, 430–440. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Kim, Y.; Jung, Y.S.; Jang, I.G.; Kim, K.-S.; Kim, S.; Kwak, B.M. Developing accurate long-distance 6-DOF motion detection with one-dimensional laser sensors: Three-beam detection system. IEEE Trans. Ind. Electron. 2012, 60, 3386–3395. [Google Scholar]
- Kroodsma, D.A.; Mayorga, J.; Hochberg, T.; Miller, N.A.; Boerder, K.; Ferretti, F.; Wilson, A.; Bergman, B.; White, T.D.; Block, B.A.; et al. Tracking the global footprint of fisheries. Science 2018, 359, 904–908. [Google Scholar] [CrossRef] [Green Version]
- Goerlandt, F.; Montewka, J.; Zhang, W.; Kujala, P. An analysis of ship escort and convoy operations in ice conditions. Saf. Sci. 2017, 95, 198–209. [Google Scholar] [CrossRef]
- Boerder, K.; Miller, N.A.; Worm, B. Global hot spots of transshipment of fish catch at sea. Sci. Adv. 2018, 4, eaat7159. [Google Scholar] [CrossRef] [Green Version]
- Cervera, M.A.; Ginesi, A.; Eckstein, K. Satellite-based vessel Automatic Identification System: A feasibility and performance analysis. Int. J. Satell. Commun. Netw. 2011, 29, 117–142. [Google Scholar] [CrossRef]
- Etienne, L.; Devogele, T.; Buchin, M.; McArdle, G. Trajectory Box Plot: A new pattern to summarize movements. Int. J. Geogr. Inf. Sci. 2016, 30, 835–853. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, Y.; Huang, L.; Zhou, C.; Xiao, C.; Zhang, F.; Peng, X.; Zhan, W.; Sui, Z. Semantic modelling of ship behavior in harbor based on ontology and dynamic bayesian network. ISPRS Int. J. Geo-Inf. 2019, 8, 107. [Google Scholar] [CrossRef] [Green Version]
- Pallotta, G.; Vespe, M.; Bryan, K. Vessel pattern knowledge discovery from AIS data: A framework for anomaly detection and route prediction. Entropy 2013, 15, 2218–2245. [Google Scholar] [CrossRef] [Green Version]
- Mascaro, S.; Nicholson, A.; Korb, K. Anomaly detection in vessel tracks using Bayesian networks. Int. J. Approx. Reason. 2014, 55, 84–98. [Google Scholar] [CrossRef]
- Rong, H.; Teixeira, A.P.; Guedes Soares, C. Data mining approach to shipping route characterization and anomaly detection based on AIS data. Ocean Eng. 2020, 198, 106936. [Google Scholar] [CrossRef]
- Zhang, W.; Goerlandt, F.; Montewka, J.; Kujala, P. A method for detecting possible near miss ship collisions from AIS data. Ocean Eng. 2015, 107, 60–69. [Google Scholar] [CrossRef]
- Silveira, P.A.M.; Teixeira, A.P.; Soares, C.G. Use of AIS data to characterise marine traffic patterns and ship collision risk off the coast of Portugal. J. Navig. 2013, 66, 879–898. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Goerlandt, F.; Kujala, P.; Wang, Y. An advanced method for detecting possible near miss ship collisions from AIS data. Ocean Eng. 2016, 124, 141–156. [Google Scholar] [CrossRef]
- Vettor, R.; Soares, C.G. Detection and analysis of the main routes of voluntary observing ships in the North Atlantic. J. Navig. 2015, 68, 397–410. [Google Scholar] [CrossRef] [Green Version]
- Zhen, R.; Jin, Y.; Hu, Q.; Shao, Z.; Nikitakos, N. Maritime anomaly detection within coastal waters based on vessel trajectory clustering and Naïve Bayes Classifier. J. Navig. 2017, 70, 648–670. [Google Scholar] [CrossRef]
- Chen, R.; Chen, M.; Li, W.; Wang, J.; Yao, X. Mobility modes awareness from trajectories based on clustering and a convolutional neural network. ISPRS Int. J. Geo-Inf. 2019, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, Y.; Li, M. Research on geospatial association of the urban agglomeration around the South China Sea based on marine traffic flow. Sustainability 2018, 10, 3346. [Google Scholar] [CrossRef] [Green Version]
- Gourmelon, F.; Le Guyader, D.; Fontenelle, G. A dynamic GIS as an efficient tool for integrated coastal zone management. ISPRS Int. J. Geo-Inf. 2014, 3, 391–407. [Google Scholar] [CrossRef] [Green Version]
- Natale, F.; Gibin, M.; Alessandrini, A.; Vespe, M.; Paulrud, A. Mapping fishing effort through AIS data. PLoS ONE 2015, 10, e0130746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coello, J.; Williams, I.; Hudson, D.A.; Kemp, S. An AIS-based approach to calculate atmospheric emissions from the UK fishing fleet. Atmos. Environ. 2015, 114, 1–7. [Google Scholar] [CrossRef]
- Merico, E.; Dinoi, A.; Contini, D. Development of an integrated modelling-measurement system for near-real-time estimates of harbour activity impact to atmospheric pollution in coastal cities. Transp. Res. Part D Transp. Environ. 2019, 73, 108–119. [Google Scholar] [CrossRef]
- Jia, H.; Adland, R.; Prakash, V.; Smith, T. Energy efficiency with the application of Virtual Arrival policy. Transp. Res. Part D Transp. Environ. 2017, 54, 50–60. [Google Scholar] [CrossRef]
- Wang, C.; Hao, L.; Ma, D.; Ding, Y.; Lv, L.; Zhang, M.; Wang, H.; Tan, J.; Wang, X.; Ge, Y. Analysis of ship emission characteristics under real-world conditions in China. Ocean Eng. 2019, 194, 106615. [Google Scholar] [CrossRef]
- Tu, E.; Zhang, G.; Rachmawati, L.; Rajabally, E.; Huang, G. Bin Exploiting AIS Data for Intelligent Maritime Navigation: A Comprehensive Survey from Data to Methodology. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1559–1582. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, X.; Wu, G.-Q.; Ding, W. Data mining with big data. IEEE Trans. Knowl. Data Eng. 2013, 26, 97–107. [Google Scholar]
- Yin, Y.; Gong, G.; Han, L. Theory and techniques of data mining in CGF behavior modeling. Sci. China Inf. Sci. 2011, 54, 717–731. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, J.; Hu, W.; Zhang, B. Big learning with Bayesian methods. Natl. Sci. Rev. 2017, 4, 627–651. [Google Scholar] [CrossRef]
- Park, D.M.; Kim, Y.; Seo, M.G.; Lee, J. Study on added resistance of a tanker in head waves at different drafts. Ocean Eng. 2016, 111, 569–581. [Google Scholar] [CrossRef] [Green Version]
- MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1965 and 27 December 1965–7 January 1966; University of California Press: Berkeley, CA, USA, 1967; Volume 1, pp. 281–297. [Google Scholar]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Donnelly, C.A.; Malik, M.R.; Elkholy, A.; Cauchemez, S.; Van Kerkhove, M.D. Worldwide Reduction in MERS Cases and Deaths since 2016. Emerg. Infect. Dis. 2019, 25, 1758. [Google Scholar] [CrossRef]
Categories | Attribute | ||
---|---|---|---|
Static information | 1. MMSI | 2. IMO | 3. Vessel_name |
4. Callsign | 5. Vessel_type | 6. Vessl_type_code | |
7. Vessel_type_cargo | 8. Vessel_class | 9. Length | |
10. Width | 11. Flag | 12. Flag_code | |
13. Vessel_type_main | 14.Vessel_type_sub | ||
Dynamic information | 1. Longitude | 2. Latitude | 3. Speed overground |
4. Course overground | 5. Rate of turning | 6. Heading | |
7. Nav_status | 8. Nav_status_code | 9. Source | |
10.Ts_pos_utc | 11. Ts_static_utc | 12.DT_pos_utc | |
13.DT_static_utc | |||
Voyage-related information | 1. Destination | 2. Estimated arrival time | 3. Draft |
Data Type | Cleaning Standard |
---|---|
Incomplete data | Data whose IMO, MMSI, Draft, or TS_pos_utc are empty |
Erroneous data | Data whose MMSI is not 9 digits long |
Duplicate data | Data with the same property values for all fields |
Year | Strait of Malacca | Strait of Hormuz | Strait of Bab el-Mandeb | Cape of Good Hope |
---|---|---|---|---|
2014 | 91.80 | 79.82 | 88.82 | 116.66 |
2015 | 103.68 | 95.53 | 102.09 | 127.29 |
2016 | 109.98 | 98.02 | 96.17 | 117.67 |
Date | Country | Number | Date | Country | Number |
---|---|---|---|---|---|
18 May 2015 | United Arb Emirates | 1 | 20 May 2015 | Korea | 2 |
21 May 2015 | Qatar | 1 | 21 May 2015 | Korea | 1 |
22 May 2015 | Qatar | 2 | 24 May 2015 | Saudi Arabia | 2 |
26–29 May 2015 | Korea | 8 | 26–30 May 2015 | Saudi Arabia | 9 |
29 May 2015 | China | 1 | 29 May 2015 | Oman | 1 |
30 May 2015 | Korea | 1 | 31 May 2015 | Korea | 2 |
1–3 June 2015 | Korea | 15 | 1–4 June 2015 | Saudi Arabia | 5 |
3 June 2015 | United Arb Emirates | 1 | 4 June 2015 | Korea | 6 |
5 June 2015 | Korea | 5 | 5–8 June 2015 | Saudi Arabia | 8 |
6 June 2015 | Korea | 9 | 7 June 2015 | Korea | 14 |
8–12 June 2015 | Korea | 62 | 9–12 June 2015 | Saudi Arabia | 3 |
13–16 June 2015 | Korea | 28 | 13–17 June 2015 | Saudi Arabia | 5 |
15 June 2015 | United Arb Emirates | 1 | 17–19 June 2015 | Korea | 1 |
18 June 2015 | Thailand | 1 | 19–30 June 2015 | Saudi Arabia | 6 |
20–23 June 2015 | Korea | 9 | 21 June 2015 | United Arb Emirates | 2 |
24–26 June 2015 | Korea | 4 | 27–30 June 2015 | Korea | 1 |
1–3 July 2015 | Korea | 2 | 1–14 July 2015 | Saudi Arabia | 6 |
4–7 June 2015 | Korea | 2 | 6 July 2015 | Philippines | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Chen, Y.; Liu, X.; Yan, Z.; Cheng, L.; Li, M. Oil Flow Analysis in the Maritime Silk Road Region Using AIS Data. ISPRS Int. J. Geo-Inf. 2020, 9, 265. https://doi.org/10.3390/ijgi9040265
Xiao Y, Chen Y, Liu X, Yan Z, Cheng L, Li M. Oil Flow Analysis in the Maritime Silk Road Region Using AIS Data. ISPRS International Journal of Geo-Information. 2020; 9(4):265. https://doi.org/10.3390/ijgi9040265
Chicago/Turabian StyleXiao, Yijia, Yanming Chen, Xiaoqiang Liu, Zhaojin Yan, Liang Cheng, and Manchun Li. 2020. "Oil Flow Analysis in the Maritime Silk Road Region Using AIS Data" ISPRS International Journal of Geo-Information 9, no. 4: 265. https://doi.org/10.3390/ijgi9040265
APA StyleXiao, Y., Chen, Y., Liu, X., Yan, Z., Cheng, L., & Li, M. (2020). Oil Flow Analysis in the Maritime Silk Road Region Using AIS Data. ISPRS International Journal of Geo-Information, 9(4), 265. https://doi.org/10.3390/ijgi9040265