Impact of Various Atmospheric Corrections on Sentinel-2 Land Cover Classification Accuracy Using Machine Learning Classifiers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Satellite Data
2.2. Processing Workflow
2.3. Atmospheric Corrections
2.3.1. S2AC
2.3.2. iCOR
2.3.3. DOS
2.3.4. SREF
2.3.5. STDSREF
2.4. Radiometric Indices
2.5. Land Cover Classification Methods
2.5.1. RF
2.5.2. XGB
2.5.3. CB
2.5.4. SVM
2.6. Accuracy Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chrysoulakis, N.; Abrams, M.; Feidas, H.; Arai, K. Comparison of atmospheric correction methods using ASTER data for the area of Crete, Greece. Int. J. Remote Sens. 2010, 31, 6347–6385. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Lantzanakis, G.; Mitraka, Z.; Chrysoulakis, N. Comparison of physically and image based atmospheric correction methods for Sentinel-2 satellite imagery. In Proceedings of the Fourth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2016), Paphos, Cyprus, 4–8 April 2016; Volume 9688, p. 96880A. [Google Scholar]
- Adam, E.; Mutanga, O.; Odindi, J.; Abdel-Rahman, E.M. Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers. Int. J. Remote Sens. 2014, 35, 3440–3458. [Google Scholar] [CrossRef]
- Koc-San, D. Evaluation of different classification techniques for the detection of glass and plastic greenhouses from WorldView-2 satellite imagery. J. Appl. Remote Sens. 2013, 7, 073553. [Google Scholar] [CrossRef]
- Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K. ichiro Assessing the suitability of data from Sentinel-1A and 2A for crop classification. GIScience Remote Sens. 2017, 54, 918–938. [Google Scholar] [CrossRef]
- Ballanti, L.; Blesius, L.; Hines, E.; Kruse, B. Tree species classification using hyperspectral imagery: A comparison of two classifiers. Remote Sens. 2016, 8, 445. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Fang, H.; Chen, M. Atmospheric correction of Landsat ETM+ land surface imagery-Part I: Methods. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2490–2498. [Google Scholar] [CrossRef]
- Rumora, L.; Miler, M.; Medak, D. Contemporary comparative assessment of atmospheric correction influence on radiometric indices between Sentinel-2A and Landsat 8 imagery. Geocarto Int. 2019, 1–15. [Google Scholar] [CrossRef]
- Vanonckelen, S.; Lhermitte, S.; Van Rompaey, A. The effect of atmospheric and topographic correction methods on land cover classification accuracy. Int. J. Appl. Earth Obs. Geoinf. 2013, 24, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Wu, C.C.; Tsogt, K.; Ouyang, Y.C.; Chang, C.I. Effects of atmospheric correction and pansharpening on LULC classification accuracy using WorldView-2 imagery. Inf. Process. Agric. 2015, 2, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience Remote Sens. 2020, 57, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Noi, P.T.; Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors (Switzerland) 2017, 18. [Google Scholar]
- Castro Gomez, M.G. Joint use of Sentinel-1 and Sentinel-2 for land cover classification: A machine learning approach. Lund Univ. GEM thesis Ser. 2017, NGEM01, 20162. [Google Scholar]
- Close, O.; Benjamin, B.; Petit, S.; Fripiat, X.; Hallot, E. Use of Sentinel-2 and LUCAS database for the inventory of land use, land use change, and forestry in Wallonia, Belgium. Land 2018, 7, 154. [Google Scholar] [CrossRef] [Green Version]
- Traganos, D.; Poursanidis, D.; Aggarwal, B.; Chrysoulakis, N.; Reinartz, P. Estimating satellite-derived bathymetry (SDB) with the Google Earth Engine and sentinel-2. Remote Sens. 2018, 10, 859. [Google Scholar] [CrossRef] [Green Version]
- Sen2Cor Software Release Note. Available online: http://step.esa.int/thirdparties/sen2cor/2.5.5/docs/S2-PDGS-MPC-L2A-SRN-V2.5.5.pdf. (accessed on 9 April 2020).
- Bunting, P.; Clewley, D. Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI). Available online: https://www.arcsi.remotesensing.info/. (accessed on 9 April 2020).
- ESA SNAP. Available online: https://step.esa.int/main/toolboxes/snap/ (accessed on 9 April 2020).
- Richter, R.; Schlapfer, D.; Muller, A. Operational atmospheric correction for imaging spectrometers accounting for the smile effect. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1772–1780. [Google Scholar] [CrossRef]
- Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 2016, 9, 1647–1672. [Google Scholar] [CrossRef] [Green Version]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First experiences in mapping lakewater quality parameters with sentinel-2 MSI imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- Guanter, L. New algorithms for atmospheric correction and retrieval of biophysical parameters in Earth Observation; Application to ENVISAT / MERIS data, University of Valencia: Valencia, Spain, 2006. [Google Scholar]
- Sterckx, S.; Knaeps, E.; Adriaensen, S.; Reusen, I.; De Keukelaere, L.; Hunter, P. Opera: An Atmospheric Correction for Land and Water. Proc. Sentin. Sci. Work. 2015, 1, 3–6. [Google Scholar]
- König, M.; Hieronymi, M.; Oppelt, N. Application of sentinel-2 msi in arctic research: Evaluating the performance of atmospheric correction approaches over arctic sea ice. Front. Earth Sci. 2019, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- De Keukelaere, L.; Sterckx, S.; Adriaensen, S.; Knaeps, E.; Reusen, I.; Giardino, C.; Bresciani, M.; Hunter, P.; Neil, C.; Van der Zande, D.; et al. Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: validation for coastal and inland waters. Eur. J. Remote Sens. 2018, 51, 525–542. [Google Scholar] [CrossRef] [Green Version]
- Pereira-Sandoval, M.; Ruescas, A.; Urrego, P.; Ruiz-Verdú, A.; Delegido, J.; Tenjo, C.; Soria-Perpinyà, X.; Vicente, E.; Soria, J.; Moreno, J. Evaluation of atmospheric correction algorithms over spanish inland waters for sentinel-2 multi spectral imagery data. Remote Sens. 2019, 11, 1469. [Google Scholar] [CrossRef] [Green Version]
- Chavez, P.S. Image-based atmospheric corrections - Revisited and improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1036. [Google Scholar]
- Vermote, E.F.; Tanré, D.; Deuzé, J.L.; Herman, M.; Morcrette, J.J. Second simulation of the satellite signal in the solar spectrum, 6s: an overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Bunting, P. Introduction to ARCSI for generating Analysis Ready Data (ARD). Available online: https://www.arcsi.remotesensing.info/tutorials/ARCSI_Intro_Tutorial_compress.pdf (accessed on 9 April 2020).
- Shepherd, J.D.; Dymond, J.R. Correcting satellite imagery for the variance of reflectance and illumination with topography. Int. J. Remote Sens. 2003, 24, 3503–3514. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G.; Major, D.J. Crop biomass evaluation using radiometric measurements. Photogrammetria 1989, 43, 241–256. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Godinho, S.; Guiomar, N.; Gil, A. Using a stochastic gradient boosting algorithm to analyse the effectiveness of Landsat 8 data for montado land cover mapping: Application in southern Portugal. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 151–162. [Google Scholar] [CrossRef]
- Lacaux, J.P.; Tourre, Y.M.; Vignolles, C.; Ndione, J.A.; Lafaye, M. Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. Remote Sens. Environ. 2007, 106, 66–74. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of urban surface water bodies from sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening. Remote Sens. 2017, 9, 596. [Google Scholar] [CrossRef] [Green Version]
- Elhag, M.; Gitas, I.; Othman, A.; Bahrawi, J.; Gikas, P. Assessment of water quality parameters using temporal remote sensing spectral reflectance in arid environments, Saudi Arabia. Water (Switzerland) 2019, 11, 556. [Google Scholar] [CrossRef] [Green Version]
- Republic of Croatia, State Geodetic Administration (DGU) Geoportal DGU. Available online: https://geoportal.dgu.hr/ (accessed on 13 January 2020).
- Xu, R.; Lin, H.; Lü, Y.; Luo, Y.; Ren, Y.; Comber, A. A modified change vector approach for quantifying land cover change. Remote Sens. 2018, 10, 1578. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification. Pattern Recognition Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Daoud, E. Al Comparison between XGBoost, LightGBM and CatBoost Using a Home Credit Dataset. Int. J. Comput. Inf. Eng. 2019, 13, 6–10. [Google Scholar]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. Catboost: Unbiased boosting with categorical features. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 2–8 December 2018. [Google Scholar]
- Petropoulos, G.P.; Kalaitzidis, C.; Prasad Vadrevu, K. Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Comput. Geosci. 2012, 41, 99–107. [Google Scholar] [CrossRef]
- Huang, C.; Song, K.; Kim, S.; Townshend, J.R.G.; Davis, P.; Masek, J.G.; Goward, S.N. Use of a dark object concept and support vector machines to automate forest cover change analysis. Remote Sens. Environ. 2008, 112, 970–985. [Google Scholar] [CrossRef]
- Knorn, J.; Rabe, A.; Radeloff, V.C.; Kuemmerle, T.; Kozak, J.; Hostert, P. Land cover mapping of large areas using chain classification of neighboring Landsat satellite images. Remote Sens. Environ. 2009, 113, 957–964. [Google Scholar] [CrossRef]
- Yingqiu, L.; Wei, L.; Yunchun, L. Network traffic classification using K-means clustering. In Proceedings of the Proceedings - 2nd International Multi-Symposiums on Computer and Computational Sciences, IMSCCS’07, Iowa City, IA, USA, 13–15 August 2007; pp. 360–365. [Google Scholar]
- Brodersen, K.H.; Ong, C.S.; Stephan, K.E.; Buhmann, J.M. The balanced accuracy and its posterior distribution. In Proceedings of the Proceedings - International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 3121–3124. [Google Scholar]
- Hunt, M.L.; Blackburn, G.A.; Carrasco, L.; Redhead, J.W.; Rowland, C.S. High resolution wheat yield mapping using Sentinel-2. Remote Sens. Environ. 2019, 233, 111410. [Google Scholar] [CrossRef]
- Shanker, M.S.; Hu, M.Y.; Hung, M.S. Effect of data standardization on neural network training. Omega 1996, 24, 385–397. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8. Remote Sens. Environ. 2015, 161, 89–106. [Google Scholar] [CrossRef] [Green Version]
- Bhagwat, R.U.; Uma Shankar, B. A novel multilabel classification of remote sensing images using XGBoost. In Proceedings of the 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India, 29–31 March 2019. [Google Scholar]
- Pal, M.; Foody, G.M. Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2297–2307. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, W.; Cheng, X.; Liao, Y.; Chen, G. Comparison and integration of feature reduction methods for land cover classification with RapidEye imagery. Multimed. Tools Appl. 2017, 76, 23041–23057. [Google Scholar] [CrossRef]
- Löw, F.; Michel, U.; Dech, S.; Conrad, C. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines. ISPRS J. Photogramm. Remote Sens. 2013, 85, 102–119. [Google Scholar] [CrossRef]
- Makrehchi, M.; Kamel, M.S. Aggressive Feature Selection by Feature Ranking. In Computational Methods of Feature Selection; Liu, H., Motoda, H., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 313–335. [Google Scholar]
Sensing Date | Image ID | Satellite |
---|---|---|
29.03.2017 | N0204_R079_T33TWL | Sentinel-2A |
20.06.2017 | N0205_R122_T33TWL | Sentinel-2A |
05.07.2017 | N0205_R122_T33TWL | Sentinel-2B |
26.08.2017 | N0205_R079_T33TWL | Sentinel-2A |
30.09.2017 | N0205_R079_T33TWL | Sentinel-2B |
24.11.2017 | N0206_R079_T33TWL | Sentinel-2A |
08.04.2018 | N0206_R079_T33TWL | Sentinel-2B |
12.06.2018 | N0206_R079_T33TWL | Sentinel-2A |
05.07.2018 | N0206_R122_T33TWL | Sentinel-2A |
29.08.2018 | N0206_R122_T33TWL | Sentinel-2B |
28.09.2018 | N0206_R122_T33TWL | Sentinel-2B |
29.11.2018 | N0207_R079_T33TWL | Sentinel-2A |
Sensing Date | Training and Validation Pixels Per Layer | ||||
---|---|---|---|---|---|
Water | Bare Soil | High Vegetation | Built-up Land | Low Vegetation | |
29.03.2017 | 13413 | 20487 | 47400 | 7778 | 8843 |
20.06.2017 | 13413 | 13514 | 47400 | 4588 | 11251 |
05.07.2017 | 13413 | 18640 | 47400 | 7778 | 9218 |
26.08.2017 | 13413 | 18640 | 47400 | 7778 | 9107 |
30.09.2017 | 13413 | 20667 | 47400 | 4588 | 7891 |
24.11.2017 | 13413 | 14663 | 47400 | 7778 | 13530 |
08.04.2018 | 13413 | 20487 | 47400 | 7778 | 9043 |
12.06.2018 | 13413 | 20487 | 47400 | 7778 | 8843 |
05.07.2018 | 13413 | 8961 | 47400 | 7778 | 10089 |
29.08.2018 | 13413 | 10106 | 47400 | 4588 | 13207 |
28.09.2018 | 13413 | 16355 | 47400 | 4588 | 11719 |
29.11.2018 | 13413 | 27646 | 47400 | 4588 | 14998 |
2017 | 2018 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Method | Date | 29 03 | 20 06 | 05 07 | 26 08 | 30 09 | 24 11 | 08 04 | 12 06 | 05 07 | 29 08 | 28 09 | 29 11 | SUM | |
Correction | |||||||||||||||
SVM | DOS | 2 | 23 | 11 | 4 | 5 | 22 | 3 | 5 | 6 | 21 | 8 | 5 | 115 | |
iCOR | 10 | 19 | 1 | 2 | 21 | 23 | 24 | 6 | 3 | 24 | 17 | 24 | 174 | ||
SREF | 1 | 5 | 3 | 3 | 13 | 2 | 5 | 3 | 4 | 14 | 4 | 23 | 80 | ||
STDSREF | 4 | 3 | 4 | 6 | 1 | 1 | 2 | 2 | 2 | 18 | 5 | 22 | 70 | ||
S2AC | 22 | 1 | 8 | 5 | 4 | 3 | 1 | 1 | 1 | 2 | 1 | 2 | 51 | ||
TOA | 3 | 24 | 2 | 1 | 6 | 24 | 3 | 3 | 5 | 23 | 9 | 16 | 119 | ||
RF | DOS | 6 | 10 | 9 | 10 | 3 | 7 | 16 | 11 | 18 | 7 | 18 | 18 | 133 | |
iCOR | 9 | 21 | 7 | 12 | 23 | 10 | 21 | 20 | 24 | 13 | 24 | 20 | 204 | ||
SREF | 5 | 16 | 14 | 11 | 14 | 13 | 12 | 8 | 19 | 8 | 21 | 15 | 156 | ||
STDSREF | 8 | 14 | 15 | 13 | 7 | 14 | 11 | 7 | 15 | 10 | 19 | 21 | 154 | ||
S2AC | 19 | 6 | 16 | 14 | 11 | 19 | 10 | 9 | 22 | 1 | 22 | 8 | 157 | ||
TOA | 7 | 11 | 10 | 9 | 2 | 4 | 15 | 10 | 16 | 3 | 20 | 19 | 126 | ||
CB | DOS | 13 | 2 | 5 | 15 | 9 | 8 | 17 | 12 | 21 | 11 | 15 | 6 | 134 | |
iCOR | 11 | 20 | 12 | 7 | 20 | 17 | 22 | 23 | 23 | 22 | 10 | 11 | 198 | ||
SREF | 17 | 8 | 21 | 23 | 17 | 15 | 19 | 21 | 17 | 12 | 3 | 4 | 177 | ||
STDSREF | 20 | 7 | 19 | 21 | 18 | 11 | 13 | 18 | 20 | 16 | 6 | 7 | 176 | ||
S2AC | 23 | 12 | 23 | 19 | 10 | 20 | 6 | 14 | 14 | 6 | 2 | 1 | 150 | ||
TOA | 15 | 4 | 17 | 17 | 12 | 5 | 8 | 16 | 13 | 15 | 14 | 10 | 146 | ||
XGB | DOS | 13 | 13 | 5 | 15 | 8 | 8 | 17 | 12 | 9 | 5 | 7 | 13 | 125 | |
iCOR | 11 | 22 | 12 | 7 | 24 | 17 | 22 | 23 | 11 | 20 | 23 | 14 | 206 | ||
SREF | 17 | 17 | 21 | 23 | 22 | 15 | 19 | 21 | 10 | 17 | 12 | 9 | 203 | ||
STDSREF | 20 | 18 | 19 | 21 | 16 | 11 | 13 | 18 | 7 | 19 | 13 | 12 | 187 | ||
S2AC | 23 | 15 | 23 | 19 | 19 | 20 | 6 | 14 | 12 | 9 | 11 | 3 | 174 | ||
TOA | 15 | 9 | 17 | 17 | 15 | 5 | 8 | 16 | 8 | 4 | 16 | 17 | 147 |
2017 | 2018 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Method | Date | 29 03 | 20 06 | 05 07 | 26 08 | 30 09 | 24 11 | 08 04 | 12 06 | 05 07 | 29 08 | 28 09 | 29 11 | SUM | |
Correction | |||||||||||||||
SVM | DOS | 7 | 2 | 5 | 5 | 15 | 3 | 4 | 6 | 6 | 6 | 2 | 5 | 66 | |
iCOR | 10 | 17 | 1 | 3 | 22 | 24 | 22 | 4 | 1 | 24 | 6 | 7 | 141 | ||
SREF | 3 | 5 | 2 | 2 | 18 | 2 | 3 | 3 | 5 | 5 | 4 | 8 | 60 | ||
STDSREF | 1 | 4 | 3 | 4 | 3 | 1 | 2 | 2 | 4 | 9 | 5 | 9 | 47 | ||
S2AC | 21 | 1 | 7 | 6 | 8 | 5 | 1 | 1 | 3 | 4 | 1 | 1 | 59 | ||
TOA | 4 | 3 | 4 | 1 | 14 | 4 | 5 | 5 | 2 | 3 | 3 | 4 | 52 | ||
RF | DOS | 5 | 7 | 8 | 9 | 12 | 8 | 11 | 20 | 14 | 8 | 17 | 14 | 133 | |
iCOR | 9 | 22 | 6 | 10 | 24 | 16 | 16 | 19 | 23 | 18 | 24 | 19 | 206 | ||
SREF | 2 | 12 | 9 | 8 | 20 | 6 | 9 | 21 | 15 | 11 | 19 | 18 | 150 | ||
STDSREF | 7 | 9 | 11 | 13 | 9 | 7 | 6 | 15 | 12 | 14 | 21 | 20 | 144 | ||
S2AC | 14 | 6 | 18 | 15 | 17 | 10 | 7 | 13 | 16 | 7 | 15 | 3 | 141 | ||
TOA | 6 | 8 | 10 | 7 | 13 | 9 | 12 | 22 | 13 | 10 | 22 | 12 | 144 | ||
CB | DOS | 17 | 19 | 20 | 14 | 5 | 21 | 23 | 10 | 19 | 15 | 9 | 13 | 185 | |
iCOR | 24 | 23 | 17 | 24 | 21 | 23 | 18 | 18 | 24 | 23 | 11 | 23 | 249 | ||
SREF | 19 | 18 | 19 | 16 | 7 | 19 | 20 | 12 | 21 | 13 | 13 | 22 | 199 | ||
STDSREF | 18 | 21 | 24 | 18 | 4 | 18 | 21 | 7 | 22 | 19 | 12 | 24 | 208 | ||
S2AC | 23 | 20 | 23 | 12 | 1 | 22 | 19 | 8 | 18 | 17 | 23 | 6 | 192 | ||
TOA | 20 | 15 | 21 | 16 | 6 | 20 | 24 | 9 | 20 | 16 | 9 | 15 | 191 | ||
XGB | DOS | 12 | 10 | 14 | 22 | 10 | 14 | 13 | 14 | 7 | 1 | 14 | 11 | 142 | |
iCOR | 22 | 24 | 15 | 11 | 23 | 17 | 17 | 23 | 17 | 22 | 18 | 21 | 230 | ||
SREF | 13 | 14 | 12 | 23 | 19 | 12 | 15 | 17 | 10 | 20 | 8 | 17 | 180 | ||
STDSREF | 15 | 16 | 13 | 20 | 2 | 11 | 8 | 11 | 8 | 21 | 7 | 16 | 148 | ||
S2AC | 16 | 13 | 22 | 19 | 16 | 13 | 10 | 24 | 11 | 12 | 20 | 2 | 178 | ||
TOA | 11 | 10 | 16 | 21 | 11 | 14 | 14 | 15 | 9 | 1 | 16 | 10 | 148 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumora, L.; Miler, M.; Medak, D. Impact of Various Atmospheric Corrections on Sentinel-2 Land Cover Classification Accuracy Using Machine Learning Classifiers. ISPRS Int. J. Geo-Inf. 2020, 9, 277. https://doi.org/10.3390/ijgi9040277
Rumora L, Miler M, Medak D. Impact of Various Atmospheric Corrections on Sentinel-2 Land Cover Classification Accuracy Using Machine Learning Classifiers. ISPRS International Journal of Geo-Information. 2020; 9(4):277. https://doi.org/10.3390/ijgi9040277
Chicago/Turabian StyleRumora, Luka, Mario Miler, and Damir Medak. 2020. "Impact of Various Atmospheric Corrections on Sentinel-2 Land Cover Classification Accuracy Using Machine Learning Classifiers" ISPRS International Journal of Geo-Information 9, no. 4: 277. https://doi.org/10.3390/ijgi9040277
APA StyleRumora, L., Miler, M., & Medak, D. (2020). Impact of Various Atmospheric Corrections on Sentinel-2 Land Cover Classification Accuracy Using Machine Learning Classifiers. ISPRS International Journal of Geo-Information, 9(4), 277. https://doi.org/10.3390/ijgi9040277