Spatiotemporal Variation of Urban Heat Islands for Implementing Nature-Based Solutions: A Case Study of Kurunegala, Sri Lanka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: KUA, Sri Lanka
2.2. Overall Workflow
2.3. Data
- The Surface Reflectance (annual median pixel) of the multispectral bands (Blue, Green, Red, near-infrared (NIR), Short-wave infrared (SWIR) 1 and Short-wave infrared (SWIR) 2), was extracted based on the GEE algorithms. Our assumption here was that the annual median pixel provides precise information regarding the land cover in the study area [58]. In this section, we used less than 10% cloud cover images. We then extracted the multispectral bands used to detect land cover changes based on the spectral index-based method described in Section 2.4.
- KUA is in the intermediate zone of Sri Lanka, and it does not have a seasonal variation in temperature. Thus, we used annual median temperatures based on the upper-atmosphere brightness temperature using thermal bands (band 6 and 10 for Landsat 5 and 8, respectively) based on the GEE. Several past studies have used annual median temperature and achieved accurate results [15,59,60] Extracted median temperatures of the thermal bands were used to derive the LSTs, as described in Section 2.5.
2.4. Land Cover Extraction and Accuracy Assessment
- The water class was extracted using the modified normalized difference water index (MNDWI) (Equation (1)) [26,31]. We then used the Otsu’s optimal binary thresholding technique to exclude the water class from the other classes [61,62].
- The IS class was extracted using the visible Red and NIR based built-up index (VrNIR-BI) using Equation (2). The VrNIR-BI has been used in previous studies and proven to produce higher accuracies compared to other built-up indices [36]. The water class was masked off before the extraction of the IS in each year. Manual thresholding was applied to extract VrNIR-BI after several threshold values were tested by examining Google Earth images and colour composite (true and false) Landsat images of the study area. Finally, −0.478, −0.478 and −0.577 thresholds values were used for 1996, 2009 and 2019, respectively.
- The GS class was extracted by using the normalized difference vegetation index (NDVI) using Equation (3). Before the extraction of the GS, the IS and water classes were masked from the NDVI maps. Then, limit values were physically calibrated utilizing Google Earth and colour composite (true and false) images for the study area. Finally, the NDVI values of 0.625 for 1996, 0.625 for 2009 and 0.737 for 2019 were used as threshold values for GS extraction. Other areas less than 0.625 for 1996, 0.625 for 2009 and 0.737 for 2019 were used to classify the “Other” class of the study area.
2.5. LST Retrieval
2.6. Urban-Rural Gradient Zone (URGZ) and UHI Profile Analysis
2.7. Grid-Based Analysis
3. Results
3.1. Accuracy Assessment and Landscape Changes
3.2. LST Distribution
3.3. LST Distribution Pattern along the URGZ
3.4. UHI Profiles
3.5. FIS and FGS Associated with Mean LST Based on the Grid-Based Method
4. Discussion
4.1. Urbanisation in the KUA
4.2. Evidence of the UHI Effect in the KUA
4.3. Implications for UHI Mitigation and NBS
4.4. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
FGS | Fraction of GS |
FIS | Fraction of IS |
GEE | Google Earth Engine |
GHG | Green House Gas |
GS | Green Surface |
IS | Impervious Surface |
KUA | Kurunegala Urban Area |
LST | Land surface temperature |
LULC | Land Use/Land Cover |
MNDWI | Modified Normalized Difference Water Index |
NBS | Nature-Based Solutions |
NDVI | Normalized Difference Vegetation Index |
NIR | Near-Infrared |
OS | Other Surface |
RS | Remote Sensing |
UHI | Urban Heat Island |
URGZ | Urban-Rural Gradient Zone |
VrNIR-BI | Visible Red and NIR based Built-up Index |
Appendix A
Sensor | Scene ID | Acquisition Date | Time (GMT) |
---|---|---|---|
Landsat 5 TM | LT05_L1TP_141055_19960221_20170106_01_T1 | 1996-02-21 | 03:59:45 |
LT05_L1TP_141055_19960308_20170106_01_T1 | 1996-03-08 | 04:00:49 | |
LT05_L1TP_141055_19960324_20170105_01_T1 | 1996-03-24 | 04:01:51 | |
LT05_L1TP_141055_19960409_20170105_01_T1 | 1996-04-09 | 04:02:51 | |
LT05_L1TP_141055_19960425_20170104_01_T1 | 1996-04-25 | 04:03:49 | |
LT05_L1TP_141055_19960511_20170104_01_T1 | 1996-05-11 | 04:04:46 | |
LT05_L1TP_141055_19960527_20170104_01_T1 | 1996-05-27 | 04:05:41 | |
LT05_L1TP_141055_19960714_20170104_01_T1 | 1996-07-14 | 04:08:15 | |
LT05_L1TP_141055_19960730_20170103_01_T1 | 1996-07-30 | 04:09:06 | |
LT05_L1TP_141055_19960815_20170103_01_T1 | 1996-08-15 | 04:09:56 | |
LT05_L1TP_141055_19960831_20170103_01_T1 | 1996-08-31 | 04:10:48 | |
LT05_L1TP_141055_19960916_20170102_01_T1 | 1996-09-16 | 04:11:41 | |
LT05_L1TP_141055_19961002_20170102_01_T1 | 1996-10-02 | 04:12:33 | |
LT05_L1TP_141055_19961103_20170102_01_T1 | 1996-11-03 | 04:14:09 | |
LT05_L1TP_141055_19961119_20170101_01_T1 | 1996-11-19 | 04:14:53 | |
LT05_L1TP_141055_19961205_20170101_01_T1 | 1996-12-05 | 04:15:40 | |
Landsat 5 TM | LT05_L1TP_141055_20090107_20161028_01_T1 | 2009-01-07 | 04:38:46 |
LT05_L1TP_141055_20090123_20161028_01_T1 | 2009-01-23 | 04:39:12 | |
LT05_L1TP_141055_20090208_20161028_01_T1 | 2009-02-08 | 04:39:37 | |
LT05_L1TP_141055_20090224_20161029_01_T1 | 2009-02-24 | 04:40:01 | |
LT05_L1TP_141055_20090312_20161029_01_T1 | 2009-03-12 | 04:40:23 | |
LT05_L1TP_141055_20090328_20161027_01_T1 | 2009-03-28 | 04:40:45 | |
LT05_L1TP_141055_20090429_20161026_01_T1 | 2009-04-29 | 04:41:22 | |
LT05_L1TP_141055_20090515_20161026_01_T1 | 2009-05-15 | 04:41:40 | |
LT05_L1TP_141055_20090616_20161025_01_T1 | 2009-06-16 | 04:42:15 | |
LT05_L1TP_141055_20090702_20161024_01_T1 | 2009-07-02 | 04:42:32 | |
LT05_L1TP_141055_20090718_20161027_01_T1 | 2009-07-18 | 04:42:49 | |
LT05_L1TP_141055_20090803_20161022_01_T1 | 2009-08-03 | 04:43:03 | |
LT05_L1TP_141055_20090819_20161022_01_T1 | 2009-08-19 | 04:43:17 | |
LT05_L1TP_141055_20090904_20161021_01_T1 | 2009-09-04 | 04:43:32 | |
LT05_L1TP_141055_20090920_20161020_01_T1 | 2009-09-20 | 04:43:44 | |
LT05_L1TP_141055_20091006_20161024_01_T1 | 2009-10-06 | 04:43:55 | |
LT05_L1TP_141055_20091022_20161019_01_T1 | 2009-10-22 | 04:44:05 | |
LT05_L1TP_141055_20091123_20161018_01_T1 | 2009-11-23 | 04:44:19 | |
Landsat 8 OLI/TIRS | LC08_L1TP_141055_20190103_20190130_01_T1 | 2019-01-03 | 04:53:47 |
LC08_L1TP_141055_20190119_20190201_01_T1 | 2019-01-19 | 04:53:44 | |
LC08_L1TP_141055_20190220_20190220_01_T1 | 2019-02-20 | 04:53:38 | |
LC08_L1TP_141055_20190308_20190324_01_T1 | 2019-03-08 | 04:53:33 | |
LC08_L1TP_141055_20190324_20190403_01_T1 | 2019-03-24 | 04:53:29 | |
LC08_L1TP_141055_20190409_20190422_01_T1 | 2019-04-09 | 04:53:25 | |
LC08_L1TP_141055_20190425_20190508_01_T1 | 2019-04-25 | 04:53:18 | |
LC08_L1TP_141055_20190511_20190521_01_T1 | 2019-05-11 | 04:53:27 | |
LC08_L1TP_141055_20190527_20190605_01_T1 | 2019-05-27 | 04:53:36 | |
LC08_L1TP_141055_20190612_20190619_01_T1 | 2019-06-12 | 04:53:43 | |
LC08_L1TP_141055_20190628_20190706_01_T1 | 2019-06-28 | 04:53:49 | |
LC08_L1TP_141055_20190714_20190719_01_T1 | 2019-07-14 | 04:53:52 | |
LC08_L1TP_141055_20190730_20190801_01_T1 | 2019-07-30 | 04:53:57 | |
LC08_L1TP_141055_20190815_20190820_01_T1 | 2019-08-15 | 04:54:03 | |
LC08_L1TP_141055_20190831_20190916_01_T1 | 2019-08-31 | 04:54:07 | |
LC08_L1TP_141055_20191002_20191018_01_T1 | 2019-10-02 | 04:54:17 | |
LC08_L1TP_141055_20191018_20191029_01_T1 | 2019-10-18 | 04:54:19 | |
LC08_L1TP_141055_20191103_20191115_01_T1 | 2019-11-03 | 04:54:18 |
References
- The World Bank. New Country Classifications by Income Level: 2019–2020. Available online: https://blogs.worldbank.org/opendata/new-country-classifications-income-level-2019-2020 (accessed on 20 March 2020).
- The World Bank. 2020 Total Population-Sri Lanka. World Bank. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL?locations=LK&view=chart (accessed on 20 March 2020).
- The World Bank. 2020 Urban Population-Sri Lanka. World Bank. Available online: https://data.worldbank.org/indicator/SP.URB.TOTL?end=2018&locations=LK&name_desc=true&start=1960&view=chart (accessed on 19 March 2020).
- The World Bank. The World Bank in Sri Lanka. Available online: https://www.worldbank.org/en/country/srilanka/overview (accessed on 10 June 2020).
- Zimmerman, T. The New Silk Roads: China, the U.S., and the Future of Central Asia; Center on International Cooperation: New York, NY, USA, 2015; pp. 1–26. [Google Scholar]
- Subasinghe, S.; Estoque, R.C.; Murayama, Y. Spatiotemporal analysis of urban growth using GIS and remote sensing: A case study of the Colombo Metropolitan Area, Sri Lanka. ISPRS Int. J. Geo-Inf. 2016, 5, 197. [Google Scholar] [CrossRef] [Green Version]
- Road Development Authority. 2020. Available online: http://www.rda.gov.lk/source/rda_roads.htm (accessed on 20 March 2020).
- National Physical Planning Department of Sri Lanka. National Physical Planning Policy & The Plan—2017–2050; National Physical Planning Department: Battaramulla, Sri Lanka, 2017.
- Ranagalage, M.; Dissanayake, D.; Murayama, Y.; Zhang, X.; Estoque, R.C.; Perera, E.; Morimoto, T. Quantifying surface urban heat island formation in the World Heritage tropical mountain city of Sri Lanka. ISPRS Int. J. Geo-Inf. 2018, 7, 341. [Google Scholar] [CrossRef] [Green Version]
- Estoque, R.C.; Murayama, Y. Quantifying landscape pattern and ecosystem service value changes in four rapidly urbanizing hill stations of Southeast Asia. Landsc. Ecol. 2016, 31, 1481–1507. [Google Scholar] [CrossRef]
- Azam, M.; Khan, A. Urbanization and environmental degradation: Evidence from four SAARC countries—Bangladesh. Environ. Prog. Sustain. Energy. 2016, 35, 823–832. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Zhang, X.; Murayama, Y. Spatial changes of urban heat island formation in the Colombo District, Sri Lanka: Implications for sustainability planning. Sustainability 2018, 10, 1367. [Google Scholar] [CrossRef] [Green Version]
- Weerasundara, L.; Amarasekara, R.W.K.; Magana-Arachchi, D.N.; Ziyath, A.M.; Karunaratne, D.G.G.P.; Goonetilleke, A.; Vithanage, M. Microorganisms and heavy metals associated with atmospheric deposition in a congested urban environment of a developing country: Sri Lanka. Sci. Total Environ. 2017, 584–585, 803–812. [Google Scholar] [CrossRef] [Green Version]
- Ranagalage, M.; Wang, R.; Gunarathna, M.H.J.P.; Dissanayake, D.; Murayama, Y.; Simwanda, M. Spatial forecasting of the landscape in rapidly urbanizing hill stations of South Asia: A case study of Nuwara Eliya, Sri Lanka (1996–2037). Remote Sens. 2019, 11, 1743. [Google Scholar] [CrossRef] [Green Version]
- Ranagalage, M.; Murayama, Y.; Dissanayake, D.; Simwanda, M. The impacts of landscape changes on annual mean land surface temperature in the tropical mountain city of Sri Lanka: A case study of Nuwara Eliya (1996–2017). Sustainability 2019, 11, 5517. [Google Scholar] [CrossRef] [Green Version]
- Sirisena, P.; Noordeen, F.; Kurukulasuriya, H. Effect of climatic factors and population density on the distribution of dengue in Sri Lanka: A GIS based evaluation for prediction of outbreaks. PLoS ONE 2017, 12, e0166806. [Google Scholar] [CrossRef] [Green Version]
- Gunawardena, A.; Hailu, A.; White, B.; Pandit, R. Estimating marginal abatement costs for industrial water pollution in Colombo. Environ. Dev. 2017, 21, 26–37. [Google Scholar] [CrossRef]
- Hettiarachchi, M.; Morrison, T.H.; Wickramsinghe, D.; Mapa, R.; De Alwis, A.; McAlpine, C.A. The eco-social transformation of urban wetlands: A case study of Colombo, Sri Lanka. Landsc. Urban Plan. 2014, 132, 55–68. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Murayama, Y. An urban heat island study of the Colombo metropolitan area, Sri Lanka, based on Landsat Data (1997–2017). ISPRS Int. J. Geo-Inf. 2017, 6, 189. [Google Scholar] [CrossRef] [Green Version]
- EPA (US Environmental Protection Agency). Reducing Urban Heat Islands: Compendium of Strategies Urban Heat Island Basics; US Environmental Protection Agency: Washington, DC, USA, 2008; pp. 1–22.
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 26, 1–26. [Google Scholar] [CrossRef]
- Arbuthnott, K.G.; Hajat, S. The health effects of hotter summers and heat waves in the population of the United Kingdom: A review of the evidence. Environ. Health 2017, 16, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Gurney, K.R. The variation of climate change impact on building energy consumption to building type and spatiotemporal scale. Energy 2016, 111, 137–153. [Google Scholar] [CrossRef] [Green Version]
- Sri Lanka Sustainable Energy Authority, Guideline for Sustainable Energy Residences in Sri Lanka; Sri Lanka Sustainable Energy Authority: Colombo, Sri Lanka, 2019; Volume 94.
- Papakostas, K.; Mavromatis, T.; Kyriakis, N. Impact of the ambient temperature rise on the energy consumption for heating and cooling in residential buildings of Greece. Renew. Energy 2010, 35, 1376–1379. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef]
- Teferi, E.; Abraha, H. Urban heat island effect of Addis Ababa city: Implications of urban green spaces for climate change adaptation. In Climate Change Adaptation in Africa; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Kikon, N.; Singh, P.; Singh, S.K.; Vyas, A. Assessment of urban heat islands (UHI) of Noida City, India using multi-temporal satellite data. Sustain. Cities Soc. 2016, 22, 19–28. [Google Scholar] [CrossRef]
- Dousset, B.; Gourmelon, F. Satellite multi-sensor data analysis of urban surface temperatures and landcover. ISPRS J. Photogramm. Remote Sens. 2003, 58, 43–54. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). ISPRS J. Photogramm. Remote Sens. 2017, 133, 18–29. [Google Scholar] [CrossRef]
- Simwanda, M.; Ranagalage, M.; Estoque, R.C.; Murayama, Y. Spatial analysis of surface urban heat islands in four rapidly growing African cities. Remote Sens. 2019, 11, 1645. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, D.; Morimoto, T.; Murayama, Y.; Ranagalage, M. Impact of landscape structure on the variation of land surface temperature in sub-saharan region: A case study of Addis Ababa using Landsat data (1986–2016). Sustainability 2019, 11, 2257. [Google Scholar] [CrossRef] [Green Version]
- Priyankara, P.; Ranagalage, M.; Dissanayake, D.; Morimoto, T.; Murayama, Y. Spatial process of surface urban heat island in rapidly growing Seoul metropolitan area for sustainable urban planning using Landsat data. Climate 2019, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Gholoobi, M.; Tayyebi, A.; Taleai, M.; Tayyebi, A. Comparing pixel based and object based approaches in land use classification in mountainous areas. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, XXXVIII, 789–794. [Google Scholar]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Classification and change detection of built-up lands from Landsat-7 ETM+ and Landsat-8 OLI/TIRS imageries: A comparative assessment of various spectral indices. Ecol. Indic. 2015, 56, 205–217. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Handayani, H.H.; Zhang, X.; Morimoto, T.; Tadono, T.; Murayama, Y. Relation between urban volume and land surface temperature: A comparative study of planned and traditional cities in Japan. Sustainability 2018, 10, 2366. [Google Scholar] [CrossRef] [Green Version]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Xiao, R.; Ouyang, Z.; Zheng, H.; Li, W.; Schienke, E.W.; Wang, X. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. J. Environ. Sci. 2007, 19, 250–256. [Google Scholar] [CrossRef]
- Myint, S.W.; Brazel, A.; Okin, G.; Buyantuyev, A. Combined effects of impervious surface and vegetation cover on air temperature variations in a rapidly expanding desert city. GIScience Remote Sens. 2010, 47, 301–320. [Google Scholar] [CrossRef]
- EPA (US Environmental Protection Agency). Reducing Urban Heat Islands: Compendium of Strategies-Cool Roofs; US Environmental Protection Agency: Washington, DC, USA, 2008; pp. 1–31.
- EPA (US Environmental Protection Agency). Reducing Urban Heat Islands: Compendium of Strategies-Green Roofs; US Environmental Protection Agency: Washington, DC, USA, 2008; pp. 1–29.
- EPA (US Environmental Protection Agency). Reducing Urban Heat Islands Compendium Strategies- Cool Pavements; US Environmental Protection Agency: Washington, DC, USA, 2008; pp. 1–40.
- Harris, R.; Coutts, A. Airborne Thermal Remote Sensing for Analysis of the Urban Heat Island; Victoria Center for Climate Change Research: Melbourne, Australia, 2011; pp. 1–34. [Google Scholar]
- Rosenzweig, C.; Solecki, W.; Parshall, L.; Gaffin, S.; Lynn, B.; Goldberg, R.; Cox, J.; Hodges, S. Mitigating New York City’s heat island with urban forestry, living roofs, and light surfaces. Presented at the 86th American Meteorological Society Annual Meeting, Atlanta, GA, USA, 30 January–2 February 2006. [Google Scholar]
- Wong, N.H.; Chen, Y.; Ong, C.L.; Sia, A. Investigation of thermal benefits of rooftop garden in the tropical environment. Build. Environ. 2003, 38, 261–270. [Google Scholar] [CrossRef]
- Dorst, H.; van der Jagt, A.; Raven, R.; Runhaar, H. Urban greening through nature-based solutions—Key characteristics of an emerging concept. Sustain. Cities Soc. 2019, 49, 101620. [Google Scholar] [CrossRef]
- Albert, C.; Schröter, B.; Haase, D.; Brillinger, M.; Henze, J.; Herrmann, S.; Gottwald, S.; Guerrero, P.; Nicolas, C.; Matzdorf, B. Addressing societal challenges through nature-based solutions: How can landscape planning and governance research contribute? Landsc. Urban Plan. 2019, 182, 12–21. [Google Scholar] [CrossRef]
- Van der Jagt, A.P.N.; Szaraz, L.R.; Delshammar, T.; Cvejić, R.; Santos, A.; Goodness, J.; Buijs, A. Cultivating nature-based solutions: The governance of communal urban gardens in the European Union. Environ. Res. 2017, 159, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016. [Google Scholar]
- Oke, T.R. Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites. Available online: http://blogs.ubc.ca/toke/files/2015/12/IOM-81-UrbanMetObs.pdf (accessed on 10 June 2020).
- Senanayake, I.P.; Welivitiya, W.D.D.P.; Nadeeka, P.M. Remote sensing based analysis of urban heat islands with vegetation cover in Colombo city, Sri Lanka using Landsat-7 ETM+ data. Urban Clim. 2013, 5, 19–35. [Google Scholar] [CrossRef]
- Dissanayake, D. Land use change and Its impacts on land surface temperature in Galle city, Sri Lanka. Climate 2020, 8, 65. [Google Scholar] [CrossRef]
- Dissanayake, D.; Morimoto, T.; Murayama, Y.; Ranagalage, M.; Perera, E. Analysis of life quality in a tropical mountain city using a multi-criteria geospatial technique: A case study of Kandy City, Sri Lanka. Sustainability 2020, 12, 2918. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, D.; Morimoto, T.; Ranagalage, M.; Murayama, Y. Land-use/land-cover changes and their impact on surface urban heat islands: Case study of Kandy City, Sri Lanka. Climate 2019, 7, 99. [Google Scholar] [CrossRef] [Green Version]
- Urban Development Authority; North Western Province Office. Kurunegala Town Development Plan 2019–2030; UDA: Battaramulla, Sri Lanka, 2019.
- Department of Census & Statistics. Census of Population and Housing. 2012. Available online: http://www.statistics.gov.lk/pophousat/cph2011/index.php?fileName=Activities/TentativelistofPublications (accessed on 25 March 2017).
- Yu, Z.; Di, L.; Tang, J.; Zhang, C.; Lin, L.; Yu, E.G.; Rahman, M.S.; Gaigalas, J.; Sun, Z. Land use and land cover classification for Bangladesh 2005 on google earth engine. In Proceedings of the 2018 7th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Hangzhou, China, 6–9 August 2018. [Google Scholar]
- Ravanelli, R.; Nascetti, A.; Cirigliano, R.V.; Di Rico, C.; Leuzzi, G.; Monti, P.; Crespi, M. Monitoring the impact of land cover change on surface urban heat island through Google Earth Engine: Proposal of a global methodology, first applications and problems. Remote Sens. 2018, 10, 1488. [Google Scholar] [CrossRef] [Green Version]
- Parastatidis, D.; Mitraka, Z.; Chrysoulakis, N.; Abrams, M. Online global land surface temperature estimation from Landsat. Remote Sens. 2017, 9, 1208. [Google Scholar] [CrossRef] [Green Version]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef] [Green Version]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Dissanayake, D.; Morimoto, T.; Ranagalage, M. Accessing the soil erosion rate based on RUSLE model for sustainable land use management: A case study of the Kotmale watershed, Sri Lanka. Model. Earth Syst. Environ. 2019, 5, 291–306. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Rousta, I.; Sarif, M.O.; Gupta, R.D.; Olafsson, H.; Ranagalage, M.; Murayama, Y.; Zhang, H.; Mushore, T.D. Spatiotemporal analysis of land use/land cover and its effects on surface urban heat island using Landsat Data: A case study of Metropolitan City Tehran (1988–2018). Sustainability 2018, 10, 4433. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, D.; Morimoto, T.; Ranagalage, M.; Murayama, Y. Impact of urban surface characteristics and socio-economic variables on the spatial variation of land surface temperature in Lagos City, Nigeria. Sustainability 2019, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; Geological Survey Professional Paper; USGS: Reston, VA, USA, 1976.
- Thanh Hoan, N.; Liou, Y.-A.; Nguyen, K.-A.; Sharma, R.; Tran, D.-P.; Liou, C.-L.; Cham, D. Assessing the effects of land-use types in surface urban heat islands for developing comfortable living in Hanoi City. Remote Sens. 2018, 10, 1965. [Google Scholar] [CrossRef] [Green Version]
- Fan, P.; Ouyang, Z.; Basnou, C.; Pino, J.; Park, H.; Chen, J. Nature-based solutions for urban landscapes under post-industrialization and globalization: Barcelona versus Shanghai. Environ. Res. 2017, 156, 272–283. [Google Scholar] [CrossRef] [Green Version]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Galagoda, R.U.; Jayasinghe, G.Y.; Halwatura, R.U.; Rupasinghe, H.T. The impact of urban green infrastructure as a sustainable approach towards tropical micro-climatic changes and human thermal comfort. Urban For. Urban Green. 2018, 34, 1–9. [Google Scholar] [CrossRef]
- UN-Habitat. The State of Sri Lankan Cities (2018). Available online: http://unhabitat.lk/wp-content/uploads/2018/12/SoSLC_Report_Final_Low-r.pdf (accessed on 10 June 2020).
- World Bank Group. Sri Lanka (Intended) International Bank for Reconstruction and Development/the World Bank Sri Lanka (Intended) Nationally Determined Contributions ((I)NDCs); World Bank Group: Washington, DC, USA, 2016. [Google Scholar]
Land Cover Class | Land Cover | Land Cover Changes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1996 | 2009 | 2019 | 1996–2009 | 2009–2019 | 1996–2019 | |||||||
ha | % | ha | % | ha | % | ha | AGR1 | ha | AGR | ha | AGR | |
IS | 158.9 | 1.6 | 463.8 | 4.6 | 1089.3 | 10.8 | 304.9 | 23.5 | 625.5 | 62.6 | 930.4 | 40.5 |
GS | 6713.6 | 66.9 | 5883.9 | 58.6 | 5436.5 | 54.1 | −829.6 | −63.8 | −447.4 | −44.7 | −1277.0 | −55.5 |
Other | 3108.3 | 31.0 | 3626.9 | 36.1 | 3439.7 | 34.3 | 518.6 | 39.9 | −187.2 | −18.7 | 331.4 | 14.4 |
Water | 59.3 | 0.6 | 65.4 | 0.7 | 74.5 | 0.7 | 6.1 | 0.5 | 9.1 | 0.9 | 15.2 | 0.7 |
(a) Mean LST of IS and GS (°C) | ||||
Land coverClass | 1996 | 2009 | 2019 | Change(1996–2019) |
IS | 22.7 | 24.8 | 28.2 | 5.5 |
GS | 21.5 | 23.2 | 26.0 | 4.6 |
(b) The Magnitude of LST (°C) | ||||
Cross-cover comparison | ∆Mean-LST | Change (1996–2019) | ||
1996 | 2009 | 2019 | ||
IS–GS | 1.2 | 1.7 | 2.2 | 1.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranagalage, M.; Ratnayake, S.S.; Dissanayake, D.; Kumar, L.; Wickremasinghe, H.; Vidanagama, J.; Cho, H.; Udagedara, S.; Jha, K.K.; Simwanda, M.; et al. Spatiotemporal Variation of Urban Heat Islands for Implementing Nature-Based Solutions: A Case Study of Kurunegala, Sri Lanka. ISPRS Int. J. Geo-Inf. 2020, 9, 461. https://doi.org/10.3390/ijgi9070461
Ranagalage M, Ratnayake SS, Dissanayake D, Kumar L, Wickremasinghe H, Vidanagama J, Cho H, Udagedara S, Jha KK, Simwanda M, et al. Spatiotemporal Variation of Urban Heat Islands for Implementing Nature-Based Solutions: A Case Study of Kurunegala, Sri Lanka. ISPRS International Journal of Geo-Information. 2020; 9(7):461. https://doi.org/10.3390/ijgi9070461
Chicago/Turabian StyleRanagalage, Manjula, Sujith S. Ratnayake, DMSLB Dissanayake, Lalit Kumar, Hasula Wickremasinghe, Jagathdeva Vidanagama, Hanna Cho, Susantha Udagedara, Keshav Kumar Jha, Matamyo Simwanda, and et al. 2020. "Spatiotemporal Variation of Urban Heat Islands for Implementing Nature-Based Solutions: A Case Study of Kurunegala, Sri Lanka" ISPRS International Journal of Geo-Information 9, no. 7: 461. https://doi.org/10.3390/ijgi9070461
APA StyleRanagalage, M., Ratnayake, S. S., Dissanayake, D., Kumar, L., Wickremasinghe, H., Vidanagama, J., Cho, H., Udagedara, S., Jha, K. K., Simwanda, M., Phiri, D., Perera, E., & Muthunayake, P. (2020). Spatiotemporal Variation of Urban Heat Islands for Implementing Nature-Based Solutions: A Case Study of Kurunegala, Sri Lanka. ISPRS International Journal of Geo-Information, 9(7), 461. https://doi.org/10.3390/ijgi9070461