Introduction to Big Data Computing for Geospatial Applications
Abstract
:1. Introduction
2. Overview of the Articles
2.1. Big Data Computational Methods
2.2. Big Data Mining
2.3. Knowledge Representation
2.4. Big Data Search
3. Conclusion and Future Research Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Yang, C.; Jin, B.; Yu, M.; Liu, K.; Sun, M.; Zhan, M. Enabling big geoscience data analytics with a cloud-based, MapReduce-enabled and service-oriented workflow framework. PLoS ONE 2015, 10, e0116781. [Google Scholar] [CrossRef] [PubMed]
- Li, Z. Geospatial Big Data Handling with High Performance Computing: Current Approaches and Future Directions. In High Performance Computing for Geospatial Applications; Tang, W., Wang, S., Eds.; Springer: New York, NY, USA, 2020; ISBN 978-3-030-47997-8. [Google Scholar]
- Jo, J.; Lee, K.-W. Map Reduce-Based D_ELT Framework to Address the Challenges of Geospatial Big Data. ISPRS Int. J. Geo-Inf. 2019, 8, 475. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Jin, B.; Fan, H.; Song, W.; Zhou, S.; Jiang, Y. High-Performance Overlay Analysis of Massive Geographic Polygons That Considers Shape Complexity in a Cloud Environment. ISPRS Int. J. Geo-Inf. 2019, 8, 290. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Fang, L.; Li, S.; Wang, X. Parallel Cellular Automata Markov Model for Land Use Change Prediction over MapReduce Framework. ISPRS Int. J. Geo-Inf. 2019, 8, 454. [Google Scholar] [CrossRef] [Green Version]
- Safanelli, J.L.; Poppiel, R.R.; Ruiz, L.F.C.; Bonfatti, B.R.; Mello, F.A.d.O.; Rizzo, R.; Demattê, J.A.M. Terrain Analysis in Google Earth Engine: A Method Adapted for High-Performance Global-Scale Analysis. ISPRS Int. J. Geo-Inf. 2020, 9, 400. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, J.; Cui, C.; Li, Y.; He, W.; Lu, Y.; Qiao, Q. Integrating Geovisual Analytics with Machine Learning for Human Mobility Pattern Discovery. ISPRS Int. J. Geo-Inf. 2019, 8, 434. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Xie, J.; Li, G.; Mou, N.; Li, Z.; Tian, C.; Zhao, J. Social Media Big Data Mining and Spatio-Temporal Analysis on Public Emotions for Disaster Mitigation. ISPRS Int. J. Geo-Inf. 2019, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Xu, Z.; Wu, G. A Novel Method of Missing Road Generation in City Blocks Based on Big Mobile Navigation Trajectory Data. ISPRS Int. J. Geo-Inf. 2019, 8, 142. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, C.; Xie, Z.; Ma, K.; Guo, M.; Wu, L. A Task-Oriented Knowledge Base for Geospatial Problem-Solving. ISPRS Int. J. Geo-Inf. 2018, 7, 423. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, X.; Ye, P.; Du, M.; Lu, Y.; Xue, H. Geographic Knowledge Graph (GeoKG): A Formalized Geographic Knowledge Representation. ISPRS Int. J. Geo-Inf. 2019, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Gaigalas, J.; Di, L.; Sun, Z. Advanced Cyberinfrastructure to Enable Search of Big Climate Datasets in THREDDS. ISPRS Int. J. Geo-Inf. 2019, 8, 494. [Google Scholar] [CrossRef] [Green Version]
- Eldawy, A. SpatialHadoop: Towards flexible and scalable spatial processing using MapReduce. In Proceedings of the SIGMOD Ph.D. Symposium 2014, Snowbird, UT, USA, 22 June 2014; pp. 46–50. [Google Scholar]
- Yu, J.; Wu, J.; Sarwat, M. Geospark: A cluster computing framework for processing large-scale spatial data. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, Bellevue, WA, USA, 3–6 November 2015; p. 70. [Google Scholar]
- Guan, Q.; Zeng, W.; Gong, J.; Yun, S. pRPL 2.0: Improving the parallel raster processing library. Trans. GIS 2014, 18, 25–52. [Google Scholar] [CrossRef]
- Li, Z.; Hodgson, M.E.; Li, W. A general-purpose framework for parallel processing of large-scale LiDAR data. Int. J. Digit. Earth 2018, 11, 26–47. [Google Scholar] [CrossRef]
- Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Ghodsi, A. Apache Spark: A unified engine for big data processing. Commun. ACM 2016, 59, 56–65. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Q.; Emrich, C. Introduction to Social Sensing and Big Data Computing for Disaster Management. Int. J. Digit. Earth 2019, 12, 1198–1204. [Google Scholar] [CrossRef] [Green Version]
- Shook, E.; Bowlick, F.J.; Kemp, K.K.; Ahlqvist, O.; Carbajeles-Dale, P.; Di Biase, D.; Rush, J. Cyber literacy for GIScience: Toward formalizing geospatial computing education. Prof. Geogr. 2019, 71, 221–238. [Google Scholar] [CrossRef]
- Li, Z.; Hu, F.; Schnase, J.L.; Duffy, D.Q.; Lee, T.; Bowen, M.K.; Yang, C. A spatiotemporal indexing approach for efficient processing of big array-based climate data with MapReduce. Int. J. Geogr. Inf. Sci. 2017, 31, 17–35. [Google Scholar] [CrossRef]
- Yang, C.; Wu, H.; Huang, Q.; Li, Z.; Li, J. Using spatial principles to optimize distributed computing for enabling the physical science discoveries. Proc. Natl. Acad. Sci. USA 2011, 108, 5498–5503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Category | Geospatial Application | Big Data Source | Computing Approaches | Article |
---|---|---|---|---|
Big Data Computational Methods | Geospatial data preprocessing | Sensor data via Internet of Things (IoT) | Parallel extracting, transforming, loading, MapReduce/Hadoop | Jo and Lee. (2019) [3] |
Overlay analysis | Land use (as a case study) | High performance computing with Spark, cloud computing | Zhao et al. (2019) [4] | |
Land-use change prediction | Remote sensing (Landsat) | Parallel modeling with MapReduce/Hadoop, cloud computing | Kang et al. (2019) [5] | |
Global scale terrain analysis | Global elevation | Google Earth Engine, cloud computing | Safanelli et al. (2020) [6] | |
Big Data Mining | Human mobility (pattern discovery) | Public transit | Machine learning (clustering algorithm), visual analytics | Zhang et al. (2019) [7] |
Disaster management (earthquake mitigation) | Social media | Deep learning (CNN), spatiotemporal analysis | Yang et al. (2019) [8] | |
Missing road generation | Navigation (trajectory) | A set of new computing algorithms | Wu et al. (2019) [9] | |
Knowledge Representation | Geospatial problem solving | Heterogeneous data via online services | Workflow, online geoprocessing, knowledge base | Zhuang et al. (2018) [10] |
Geographic knowledge representation | Ontological | Knowledge graph, ontologies | Wang et al. (2019) [11] | |
Big Data Search | Geospatial big data management and searching (climate data) | Climate | Cyberinfrastructure-based cataloging, spatiotemporal indexing | Gaigalas et al. (2019) [12] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Tang, W.; Huang, Q.; Shook, E.; Guan, Q. Introduction to Big Data Computing for Geospatial Applications. ISPRS Int. J. Geo-Inf. 2020, 9, 487. https://doi.org/10.3390/ijgi9080487
Li Z, Tang W, Huang Q, Shook E, Guan Q. Introduction to Big Data Computing for Geospatial Applications. ISPRS International Journal of Geo-Information. 2020; 9(8):487. https://doi.org/10.3390/ijgi9080487
Chicago/Turabian StyleLi, Zhenlong, Wenwu Tang, Qunying Huang, Eric Shook, and Qingfeng Guan. 2020. "Introduction to Big Data Computing for Geospatial Applications" ISPRS International Journal of Geo-Information 9, no. 8: 487. https://doi.org/10.3390/ijgi9080487
APA StyleLi, Z., Tang, W., Huang, Q., Shook, E., & Guan, Q. (2020). Introduction to Big Data Computing for Geospatial Applications. ISPRS International Journal of Geo-Information, 9(8), 487. https://doi.org/10.3390/ijgi9080487