Myotube Guidance: Shaping up the Musculoskeletal System
Abstract
:1. Introduction
2. Myogenesis, from Progenitor to Contractile Myofiber
2.1. Discovering the Myotube: Surprises of the Syncytium
2.2. Myotube Specification and Development
2.3. Myotube Guidance Perfects the Musculoskeletal Pattern
2.4. Gene Hunts to Identify Myotube Guidance Pathways
3. Molecular Sensors at the Leading Edge
4. Integration of Sensory Information with Cytoskeletal Dynamics
4.1. Actin Dynamics at the Leading Edge
4.2. Microtubule Reorganization
4.3. Cytoskeletal Regulators Maintain Myotube Identity
4.4. Cytoskeletal Regulators and Axon Guidance
5. Addition of Myotube Mass and Volume
6. Is Muscle Attachment Site Selection Predetermined?
7. Myotube Guidance and Muscle Disease
8. Concluding Remarks
Funding
Acknowledgments
Conflicts of Interest
References
- McCormick, L.E.; Gupton, S.L. Mechanistic advances in axon pathfinding. Curr. Opin. Cell Biol. 2020, 63, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; McAdow, J.; Du, Y.; Trigg, J.; Taghert, P.; Johnson, A.N. Spatiotemporal expression of regulatory kinases directs the transition from mitotic growth to cellular morphogenesis. Nat. Commun. 2022, 13, 772. [Google Scholar] [PubMed]
- Yang, S.; Weske, A.; Du, Y.; Valera, J.M.; Jones, K.L.; Johnson, A.N. FGF signaling directs myotube guidance by regulating Rac activity. Development 2020, 147, dev183624. [Google Scholar] [CrossRef] [PubMed]
- Raffa, V. Force: A messenger of axon outgrowth. Semin. Cell Dev. Biol. 2023, 140, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Carey, E.J. Studies in the dynamics of histogenesis: II. tension of differential growth as a stimulus to myogenesis in the esophagus. J. Gen. Physiol. 1920, 3, 61–83. [Google Scholar] [CrossRef]
- Dohrmann, C.; Azpiazu, N.; Frasch, M. A new Drosophila homeo box gene is expressed in mesodermal precursor cells of distinct muscles during embryogenesis. Genes. Dev. 1990, 4, 2098–2111. [Google Scholar] [CrossRef]
- Bate, M. The embryonic development of larval muscles in Drosophila. Development 1990, 110, 791–804. [Google Scholar]
- Herrmann, H. Studies of muscle development. Ann. N. Y Acad. Sci. 1952, 55, 99–108. [Google Scholar] [CrossRef]
- Kardon, G. Muscle and tendon morphogenesis in the avian hind limb. Development 1998, 125, 4019–4032. [Google Scholar] [CrossRef]
- Konigsberg, I.R.; McElvain, N.; Tootle, M.; Herrmann, H. The dissociability of deoxyribonucleic acid synthesis from the development of multinuclearity of muscle cells in culture. J. Biophys. Biochem. Cytol. 1960, 8, 333–343. [Google Scholar] [CrossRef]
- Konigsberg, I.R. Clonal analysis of myogenesis. Science 1963, 140, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Junion, G.; Jagla, K. Diversification of muscle types in Drosophila embryos. Exp. Cell Res. 2022, 410, 112950. [Google Scholar] [CrossRef] [PubMed]
- Carmena, A.; Gisselbrecht, S.; Harrison, J.; Jiménez, F.; Michelson, A.M. Combinatorial signaling codes for the progressive determination of cell fates in the Drosophila embryonic mesoderm. Genes Dev. 1998, 12, 3910–3922. [Google Scholar] [CrossRef]
- Molkentin, J.D.; Olson, E.N. Defining the regulatory networks for muscle development. Curr. Opin. Genet. Dev. 1996, 6, 445–453. [Google Scholar] [CrossRef]
- Lilly, B.; Zhao, B.; Ranganayakulu, G.; Paterson, B.M.; Schulz, R.A.; Olson, E.N. Requirement of MADS Domain Transcription Factor D-MEF2 for Muscle Formation in Drosophila. Science 1995, 267, 688–693. [Google Scholar] [CrossRef]
- Junion, G.; Jagla, T.; Duplant, S.; Tapin, R.; Da Ponte, J.-P.; Jagla, K. Mapping Dmef2-binding regulatory modules by using a ChIP-enriched in silico targets approach. Proc. Natl. Acad. Sci. USA 2005, 102, 18479–18484. [Google Scholar] [CrossRef]
- Martin, J.F.; Schwarz, J.J.; Olson, E.N. Myocyte enhancer factor (MEF) 2C: A tissue-restricted member of the MEF-2 family of transcription factors. Proc. Natl. Acad. Sci. USA 1993, 90, 5282–5286. [Google Scholar] [CrossRef] [PubMed]
- Olson, E.N. Interplay between proliferation and differentiation within the myogenic lineage. Dev. Biol. 1992, 154, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Snow, C.J.; Goody, M.; Kelly, M.W.; Oster, E.C.; Jones, R.; Khalil, A.; Henry, C.A. Time-lapse analysis and mathematical characterization elucidate novel mechanisms underlying muscle morphogenesis. PLoS Genet. 2008, 4, e1000219. [Google Scholar] [CrossRef]
- Green, H.J.; Griffiths, A.G.; Ylänne, J.; Brown, N.H. Novel functions for integrin-associated proteins revealed by analysis of myofibril attachment in Drosophila. eLife 2018, 7, e35783. [Google Scholar] [CrossRef]
- Hromowyk, K.J.; Talbot, J.C.; Martin, B.L.; Janssen, P.M.L.; Amacher, S.L. Cell fusion is differentially regulated in zebrafish post-embryonic slow and fast muscle. Dev. Biol. 2020, 462, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Johnson, A.N. The serine/threonine kinase Back seat driver prevents cell fusion to maintain cell identity. Dev. Biol. 2023, 495, 35–41. [Google Scholar] [CrossRef]
- Maartens, A.P.; Brown, N.H. The many faces of cell adhesion during Drosophila muscle development. Dev. Biol. 2015, 401, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Kramer, S.G.; Kidd, T.; Simpson, J.H.; Goodman, C.S. Switching repulsion to attraction: Changing responses to slit during transition in mesoderm migration. Science 2001, 292, 737–740. [Google Scholar] [CrossRef]
- Guerin, C.M.; Kramer, S.G. RacGAP50C directs perinuclear gamma-tubulin localization to organize the uniform microtubule array required for Drosophila myotube extension. Development 2009, 136, 1411–1421. [Google Scholar] [CrossRef]
- Ou, T.; Huang, G.; Wilson, B.; Gontarz, P.; Skeath, J.B.; Johnson, A.N. A genetic screen for regulators of muscle morphogenesis in Drosophila. G3 2021, 11, jkab172. [Google Scholar] [CrossRef]
- Johnson, A.N.; Mokalled, M.H.; Valera, J.M.; Poss, K.D.; Olson, E.N. Post-transcriptional regulation of myotube elongation and myogenesis by Hoi Polloi. Development 2013, 140, 3645–3656. [Google Scholar] [CrossRef]
- Schnorrer, F.; Kalchhauser, I.; Dickson, B.J. The transmembrane protein Kon-tiki couples to Dgrip to mediate myotube targeting in Drosophila. Dev. Cell 2007, 12, 751–766. [Google Scholar] [CrossRef] [PubMed]
- Volk, T. Singling out Drosophila tendon cells: A dialogue between two distinct cell types. Trends Genet. 1999, 15, 448–453. [Google Scholar] [CrossRef]
- Kidd, T.; Bland, K.S.; Goodman, C.S. Slit is the midline repellent for the robo receptor in Drosophila. Cell 1999, 96, 785–794. [Google Scholar] [CrossRef]
- Ordan, E.; Volk, T. A non-signaling role of Robo2 in tendons is essential for Slit processing and muscle patterning. Development 2015, 142, 3512–3518. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Tolwinski, N.; Saunders, T.E. Spatiotemporal sensitivity of mesoderm specification to FGFR signalling in the Drosophila embryo. Sci. Rep. 2021, 11, 14091. [Google Scholar] [CrossRef]
- Gros, J.; Serralbo, O.; Marcelle, C. WNT11 acts as a directional cue to organize the elongation of early muscle fibres. Nature 2009, 457, 589–593. [Google Scholar] [CrossRef]
- Perillo, M.; Swartz, S.Z.; Pieplow, C.; Wessel, G.M. Molecular mechanisms of tubulogenesis revealed in the sea star hydro-vascular organ. Nat. Commun. 2023, 14, 2402. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, V.; Grant, M.G.; Suzuki, M.; Christophers, B.; Williams, J.R.; Burdine, R.D. Cooperation between Nodal and FGF signals regulates zebrafish cardiac cell migration and heart morphogenesis. bioRxiv 2024. [Google Scholar] [CrossRef]
- Williams, J.; Boin, N.G.; Valera, J.M.; Johnson, A.N. Noncanonical roles for Tropomyosin during myogenesis. Development 2015, 142, 3440–3452. [Google Scholar] [CrossRef]
- Richardson, B.E.; Beckett, K.; Nowak, S.J.; Baylies, M.K. SCAR/WAVE and Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion. Development 2007, 134, 4357–4367. [Google Scholar] [CrossRef]
- Verboon, J.M.; Parkhurst, S.M. Rho family GTPase functions in Drosophila epithelial wound repair. Small GTPases 2015, 6, 28–35. [Google Scholar] [CrossRef]
- Tillery, M.M.L.; Blake-Hedges, C.; Zheng, Y.; Buchwalter, R.A.; Megraw, T.L. Centrosomal and Non-Centrosomal Microtubule-Organizing Centers (MTOCs) in Drosophila melanogaster. Cells 2018, 7, 121. [Google Scholar] [CrossRef]
- Bugnard, E.; Zaal, K.J.; Ralston, E. Reorganization of microtubule nucleation during muscle differentiation. Cell Motil. Cytoskelet. 2005, 60, 1–13. [Google Scholar] [CrossRef]
- Colasanto, M.P.; Eyal, S.; Mohassel, P.; Bamshad, M.; Bonnemann, C.G.; Zelzer, E.; Moon, A.M.; Kardon, G. Development of a subset of forelimb muscles and their attachment sites requires the ulnar-mammary syndrome gene Tbx3. Dis. Model. Mech. 2016, 9, 1257–1269. [Google Scholar] [PubMed]
- Lamoureux, P.; Heidemann, S.R.; Martzke, N.R.; Miller, K.E. Growth and elongation within and along the axon. Dev. Neurobiol. 2010, 70, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Athamneh, A.I.M.; He, Y.; Lamoureux, P.; Fix, L.; Suter, D.M.; Miller, K.E. Neurite elongation is highly correlated with bulk forward translocation of microtubules. Sci. Rep. 2017, 7, 7292. [Google Scholar] [CrossRef]
- Falconieri, A.; Coppini, A.; Raffa, V. Microtubules as a signal hub for axon growth in response to mechanical force. Biol. Chem. 2024, 405, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Windner, S.E.; Manhart, A.; Brown, A.; Mogilner, A.; Baylies, M.K. Nuclear Scaling Is Coordinated among Individual Nuclei in Multinucleated Muscle Fibers. Dev. Cell 2019, 49, 48–62.e43. [Google Scholar] [CrossRef]
- Azevedo, M.; Baylies, M.K. Getting into Position: Nuclear Movement in Muscle Cells. Trends Cell Biol. 2020, 30, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Cadot, B.; Gache, V.; Vasyutina, E.; Falcone, S.; Birchmeier, C.; Gomes, E.R. Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3. EMBO Rep. 2012, 13, 741–749. [Google Scholar] [CrossRef]
- Bai, L.; Tu, W.Y.; Xiao, Y.; Zhang, K.; Shen, C. Motoneurons innervation determines the distinct gene expressions in multinucleated myofibers. Cell Biosci. 2022, 12, 140. [Google Scholar] [CrossRef]
- Moucaud, B.; Prince, E.; Jagla, K.; Soler, C. Developmental origin of tendon diversity in Drosophila melanogaster. Front. Physiol. 2023, 14, 1176148. [Google Scholar] [CrossRef]
- Feregrino, C.; Tschopp, P. Assessing evolutionary and developmental transcriptome dynamics in homologous cell types. Dev. Dyn. 2022, 251, 1472–1489. [Google Scholar] [CrossRef]
- Kelly, N.H.; Huynh, N.P.T.; Guilak, F. Single cell RNA-sequencing reveals cellular heterogeneity and trajectories of lineage specification during murine embryonic limb development. Matrix Biol. J. Int. Soc. Matrix Biol. 2020, 89, 1–10. [Google Scholar] [CrossRef]
- Terry, E.E.; Zhang, X.; Hoffmann, C.; Hughes, L.D.; Lewis, S.A.; Li, J.; Wallace, M.J.; Riley, L.A.; Douglas, C.M.; Gutierrez-Monreal, M.A.; et al. Transcriptional profiling reveals extraordinary diversity among skeletal muscle tissues. eLife 2018, 7, e34613. [Google Scholar] [CrossRef] [PubMed]
- Courgeon, M.; Desplan, C. Coordination between stochastic and deterministic specification in the Drosophila visual system. Science 2019, 366, eaay6727. [Google Scholar] [CrossRef]
- McAdow, J.; Yang, S.; Ou, T.; Huang, G.; Dobbs, M.B.; Gurnett, C.A.; Greenberg, M.J.; Johnson, A.N. A pathogenic mechanism associated with myopathies and structural birth defects involves TPM2-directed myogenesis. JCI Insight 2022, 7, e152466. [Google Scholar] [CrossRef]
- Whittle, J.; Antunes, L.; Harris, M.; Upshaw, Z.; Sepich, D.S.; Johnson, A.N.; Mokalled, M.; Solnica-Krezel, L.; Dobbs, M.B.; Gurnett, C.A. MYH3-associated distal arthrogryposis zebrafish model is normalized with para-aminoblebbistatin. EMBO Mol. Med. 2020, 12, e12356. [Google Scholar] [CrossRef]
- Hardeman, E.C.; Bryce, N.S.; Gunning, P.W. Impact of the actin cytoskeleton on cell development and function mediated via tropomyosin isoforms. Semin. Cell Dev. Biol. 2020, 102, 122–131. [Google Scholar] [CrossRef]
- Squire, J.M.; Paul, D.M.; Morris, E.P. Myosin and Actin Filaments in Muscle: Structures and Interactions. Sub-Cell. Biochem. 2017, 82, 319–371. [Google Scholar] [CrossRef]
- Mokbel, N.; Ilkovski, B.; Kreissl, M.; Memo, M.; Jeffries, C.M.; Marttila, M.; Lehtokari, V.L.; Lemola, E.; Grönholm, M.; Yang, N.; et al. K7del is a common TPM2 gene mutation associated with nemaline myopathy and raised myofibre calcium sensitivity. Brain J. Neurol. 2013, 136, 494–507. [Google Scholar] [CrossRef]
- Davidson, A.E.; Siddiqui, F.M.; Lopez, M.A.; Lunt, P.; Carlson, H.A.; Moore, B.E.; Love, S.; Born, D.E.; Roper, H.; Majumdar, A.; et al. Novel deletion of lysine 7 expands the clinical, histopathological and genetic spectrum of TPM2-related myopathies. Brain J. Neurol. 2013, 136, 508–521. [Google Scholar] [CrossRef]
- Tajsharghi, H.; Ohlsson, M.; Lindberg, C.; Oldfors, A. Congenital myopathy with nemaline rods and cap structures caused by a mutation in the beta-tropomyosin gene (TPM2). Arch. Neurol. 2007, 64, 1334–1338. [Google Scholar] [CrossRef]
- Clarke, N.F.; Domazetovska, A.; Waddell, L.; Kornberg, A.; McLean, C.; North, K.N. Cap disease due to mutation of the beta-tropomyosin gene (TPM2). Neuromuscul. Disord. NMD 2009, 19, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, M.; Quijano-Roy, S.; Darin, N.; Brochier, G.; Lacene, E.; Avila-Smirnow, D.; Fardeau, M.; Oldfors, A.; Tajsharghi, H. New morphologic and genetic findings in cap disease associated with beta-tropomyosin (TPM2) mutations. Neurology 2008, 71, 1896–1901. [Google Scholar] [CrossRef] [PubMed]
- Clarke, N.F.; North, K.N. Congenital fiber type disproportion–30 years on. J. Neuropathol. Exp. Neurol. 2003, 62, 977–989. [Google Scholar] [CrossRef]
- Bamshad, M.; Van Heest, A.E.; Pleasure, D. Arthrogryposis: A review and update. J. Bone Jt. Surg. 2009, 91 (Suppl. S4), 40–46. [Google Scholar] [CrossRef]
- Sung, S.S.; Brassington, A.M.; Grannatt, K.; Rutherford, A.; Whitby, F.G.; Krakowiak, P.A.; Jorde, L.B.; Carey, J.C.; Bamshad, M. Mutations in genes encoding fast-twitch contractile proteins cause distal arthrogryposis syndromes. Am. J. Hum. Genet. 2003, 72, 681–690. [Google Scholar] [CrossRef]
- Li, S.; You, Y.; Gao, J.; Mao, B.; Cao, Y.; Zhao, X.; Zhang, X. Novel mutations in TPM2 and PIEZO2 are responsible for distal arthrogryposis (DA) 2B and mild DA in two Chinese families. BMC Med. Genet. 2018, 19, 179. [Google Scholar] [CrossRef]
- Tajsharghi, H.; Kimber, E.; Holmgren, D.; Tulinius, M.; Oldfors, A. Distal arthrogryposis and muscle weakness associated with a beta-tropomyosin mutation. Neurology 2007, 68, 772–775. [Google Scholar] [CrossRef] [PubMed]
- Marttila, M.; Lehtokari, V.L.; Marston, S.; Nyman, T.A.; Barnerias, C.; Beggs, A.H.; Bertini, E.; Ceyhan-Birsoy, O.; Cintas, P.; Gerard, M.; et al. Mutation update and genotype-phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies. Hum. Mutat. 2014, 35, 779–790. [Google Scholar] [CrossRef]
- Mroczek, M.; Kabzińska, D.; Chrzanowska, K.H.; Pronicki, M.; Kochański, A. A novel TPM2 gene splice-site mutation causes severe congenital myopathy with arthrogryposis and dysmorphic features. J. Appl. Genet. 2017, 58, 199–203. [Google Scholar] [CrossRef]
- Morgan, N.V.; Brueton, L.A.; Cox, P.; Greally, M.T.; Tolmie, J.; Pasha, S.; Aligianis, I.A.; van Bokhoven, H.; Marton, T.; Al-Gazali, L.; et al. Mutations in the embryonal subunit of the acetylcholine receptor (CHRNG) cause lethal and Escobar variants of multiple pterygium syndrome. Am. J. Hum. Genet. 2006, 79, 390–395. [Google Scholar] [CrossRef]
- Tajsharghi, H.; Ohlsson, M.; Palm, L.; Oldfors, A. Myopathies associated with beta-tropomyosin mutations. Neuromuscul. Disord. NMD 2012, 22, 923–933. [Google Scholar] [CrossRef]
- Vogt, J.; Al-Saedi, A.; Willis, T.; Male, A.; McKie, A.; Kiely, N.; Maher, E.R. A recurrent pathogenic variant in TPM2 reveals further phenotypic and genetic heterogeneity in multiple pterygium syndrome-related disorders. Clin. Genet. 2020, 97, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Marston, S.; Memo, M.; Messer, A.; Papadaki, M.; Nowak, K.; McNamara, E.; Ong, R.; El-Mezgueldi, M.; Li, X.; Lehman, W. Mutations in repeating structural motifs of tropomyosin cause gain of function in skeletal muscle myopathy patients. Hum. Mol. Genet. 2013, 22, 4978–4987. [Google Scholar] [CrossRef] [PubMed]
- Marttila, M.; Lemola, E.; Wallefeld, W.; Memo, M.; Donner, K.; Laing, N.G.; Marston, S.; Grönholm, M.; Wallgren-Pettersson, C. Abnormal actin binding of aberrant β-tropomyosins is a molecular cause of muscle weakness in TPM2-related nemaline and cap myopathy. Biochem. J. 2012, 442, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Ochala, J.; Iwamoto, H.; Larsson, L.; Yagi, N. A myopathy-linked tropomyosin mutation severely alters thin filament conformational changes during activation. Proc. Natl. Acad. Sci. USA 2010, 107, 9807–9812. [Google Scholar] [CrossRef] [PubMed]
- Borovikov, Y.S.; Avrova, S.V.; Rysev, N.A.; Sirenko, V.V.; Simonyan, A.O.; Chernev, A.A.; Karpicheva, O.E.; Piers, A.; Redwood, C.S. Aberrant movement of β-tropomyosin associated with congenital myopathy causes defective response of myosin heads and actin during the ATPase cycle. Arch. Biochem. Biophys. 2015, 577–578, 11–23. [Google Scholar] [CrossRef]
- Borovikov, Y.S.; Karpicheva, O.E.; Avrova, S.V.; Simonyan, A.O.; Sirenko, V.V.; Redwood, C.S. The molecular mechanism of muscle dysfunction associated with the R133W mutation in Tpm2.2. Biochem. Biophys. Res. Commun. 2020, 523, 258–262. [Google Scholar] [CrossRef]
- Avrova, S.V.; Karpicheva, O.E.; Rysev, N.A.; Simonyan, A.O.; Sirenko, V.V.; Redwood, C.S.; Borovikov, Y.S. The reason for the low Ca2+-sensitivity of thin filaments associated with the Glu41Lys mutation in the TPM2 gene is “freezing” of tropomyosin near the outer domain of actin and inhibition of actin monomer switching off during the ATPase cycle. Biochem. Biophys. Res. Commun. 2018, 502, 209–214. [Google Scholar] [CrossRef]
- Matyushenko, A.M.; Shchepkin, D.V.; Susorov, D.S.; Nefedova, V.V.; Kopylova, G.V.; Berg, V.Y.; Kleymenov, S.Y.; Levitsky, D.I. Structural and functional properties of αβ-heterodimers of tropomyosin with myopathic mutations Q147P and K49del in the β-chain. Biochem. Biophys. Res. Commun. 2019, 508, 934–939. [Google Scholar] [CrossRef]
- Shin, H.; Kim, D.; Helfman, D.M. Tropomyosin isoform Tpm2.1 regulates collective and amoeboid cell migration and cell aggregation in breast epithelial cells. Oncotarget 2017, 8, 95192–95205. [Google Scholar] [CrossRef]
- Lees, J.G.; Ching, Y.W.; Adams, D.H.; Bach, C.T.; Samuel, M.S.; Kee, A.J.; Hardeman, E.C.; Gunning, P.; Cowin, A.J.; O’Neill, G.M. Tropomyosin regulates cell migration during skin wound healing. J. Investig. Dermatol. 2013, 133, 1330–1339. [Google Scholar] [CrossRef] [PubMed]
- Bugyi, B.; Didry, D.; Carlier, M.F. How tropomyosin regulates lamellipodial actin-based motility: A combined biochemical and reconstituted motility approach. EMBO J. 2010, 29, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, M.; Gao, Y.; Song, X.; Zheng, H.; Zhang, K.; Zhang, B.; Chen, D. P2Y6 regulates cytoskeleton reorganization and cell migration of C2C12 myoblasts via ROCK pathway. J. Cell. Biochem. 2018, 119, 1889–1898. [Google Scholar] [CrossRef]
- Koutsopoulos, O.S.; Kretz, C.; Weller, C.M.; Roux, A.; Mojzisova, H.; Böhm, J.; Koch, C.; Toussaint, A.; Heckel, E.; Stemkens, D.; et al. Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome. Eur. J. Hum. Genet. 2013, 21, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Knierim, E.; Hirata, H.; Wolf, N.I.; Morales-Gonzalez, S.; Schottmann, G.; Tanaka, Y.; Rudnik-Schöneborn, S.; Orgeur, M.; Zerres, K.; Vogt, S.; et al. Mutations in Subunits of the Activating Signal Cointegrator 1 Complex Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures. Am. J. Hum. Genet. 2016, 98, 473–489. [Google Scholar] [CrossRef]
- Boyden, S.E.; Mahoney, L.J.; Kawahara, G.; Myers, J.A.; Mitsuhashi, S.; Estrella, E.A.; Duncan, A.R.; Dey, F.; DeChene, E.T.; Blasko-Goehringer, J.M.; et al. Mutations in the satellite cell gene MEGF10 cause a recessive congenital myopathy with minicores. Neurogenetics 2012, 13, 115–124. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014, 42, D980–D985. [Google Scholar] [CrossRef]
- OMIM. Online Mendelian Inheritance in Man, OMIM®®. Available online: https://omim.org/ (accessed on 21 May 2024).
- Gurevich, D.B.; Nguyen, P.D.; Siegel, A.L.; Ehrlich, O.V.; Sonntag, C.; Phan, J.M.; Berger, S.; Ratnayake, D.; Hersey, L.; Berger, J.; et al. Asymmetric division of clonal muscle stem cells coordinates muscle regeneration in vivo. Science 2016, 353, aad9969. [Google Scholar] [CrossRef]
- Shahriyari, M.; Islam, M.R.; Sakib, S.M.; Rinn, M.; Rika, A.; Krüger, D.; Kaurani, L.; Gisa, V.; Winterhoff, M.; Anandakumar, H.; et al. Engineered skeletal muscle recapitulates human muscle development, regeneration and dystrophy. J. Cachexia Sarcopenia Muscle 2022, 13, 3106–3121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, A.N. Myotube Guidance: Shaping up the Musculoskeletal System. J. Dev. Biol. 2024, 12, 25. https://doi.org/10.3390/jdb12030025
Johnson AN. Myotube Guidance: Shaping up the Musculoskeletal System. Journal of Developmental Biology. 2024; 12(3):25. https://doi.org/10.3390/jdb12030025
Chicago/Turabian StyleJohnson, Aaron N. 2024. "Myotube Guidance: Shaping up the Musculoskeletal System" Journal of Developmental Biology 12, no. 3: 25. https://doi.org/10.3390/jdb12030025
APA StyleJohnson, A. N. (2024). Myotube Guidance: Shaping up the Musculoskeletal System. Journal of Developmental Biology, 12(3), 25. https://doi.org/10.3390/jdb12030025