Prosaposin/Saposin Expression in the Developing Rat Olfactory and Vomeronasal Epithelia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Tissue Preparation
2.2. Immunohistochemistry
2.3. Immunofluorescence
3. Results
3.1. Prosaposin Immunoreactivity in the OE
3.2. Prosaposin Immunoreactivity in the VNE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BC | basal cell |
OE | olfactory epithelium |
OMP | olfactory marker protein |
ORN | olfactory receptor neuron |
P | postnatal day |
SC | supporting cell |
VNE | vomeronasal epithelium |
VNO | vomeronasal organ |
VRN | vomeronasal receptor neuron |
References
- Choi, K.M.; Hwang, S.D.; Joo, M.S.; Hwang, J.Y.; Kwon, M.G.; Jeong, J.M.; Seo, J.S.; Lee, J.H.; Lee, H.C.; Park, C.I. Two short antimicrobial peptides derived from prosaposin-like proteins in the starry flounder (Platichthys stellatus). Fish Shellfish Immunol. 2020, 105, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Hazkani-Covo, E.; Altman, N.; Horowitz, M.; Graur, D. The evolutionary history of prosaposin: Two successive tandem-duplication events gave rise to the four saposin domains in vertebrates. J. Mol. Evol. 2002, 54, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Sohel, M.S.H.; Atoji, Y.; Onouchi, S.; Saito, S. Expression patterns of prosaposin and neurotransmitter-related molecules in the chick paratympanic organ. Tissue Cell 2023, 83, 102130. [Google Scholar] [CrossRef] [PubMed]
- Sohel, M.S.H.; Homma, T.; Onouchi, S.; Saito, S. Expression patterns of prosaposin and its receptors, G protein-coupled receptor (GPR) 37 and GPR37L1 mRNAs, in the chick inner ear. Cell Tissue Res. 2023, 392, 481–497. [Google Scholar] [CrossRef] [PubMed]
- Hiraiwa, M.; Martin, B.M.; Kishimoto, Y.; Conner, G.E.; Tsuji, S.; O’Brien, J.S. Lysosomal proteolysis of prosaposin, the precursor of saposins (sphingolipid activator proteins): Its mechanism and inhibition by ganglioside. Arch. Biochem. Biophys. 1997, 341, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Hiraiwa, M.; O’Brien, J.S.; Kishimoto, Y.; Galdzicka, M.; Fluharty, A.L.; Ginns, E.I.; Martin, B.M. Isolation, characterization, and proteolysis of human prosaposin, the precursor of saposins (sphingolipid activator proteins). Arch. Biochem. Biophys. 1993, 304, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Leonova, T.; Qi, X.; Bencosme, A.; Ponce, E.; Sun, Y.; Grabowski, G.A. Proteolytic processing patterns of prosaposin in insect and mammalian cells. J. Biol. Chem. 1996, 271, 17312–17320. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.S.; Kretz, K.A.; Dewji, N.; Wenger, D.A.; Esch, F.; Fluharty, A.L. Coding of two sphingolipid activator proteins (SAP-1 and SAP-2) by same genetic locus. Science 1988, 241, 1098–1101. [Google Scholar] [CrossRef]
- Harzer, K.; Paton, B.C.; Christomanou, H.; Chatelut, M.; Levade, T.; Hiraiwa, M.; O’Brien, J.S. Saposins (sap) A and C activate the degradation of galactosylceramide in living cells. FEBS Lett. 1997, 417, 270–274. [Google Scholar] [CrossRef]
- Harzer, K.; Hiraiwa, M.; Paton, B.C. Saposins (sap) A and C activate the degradation of galactosylsphingosine. FEBS Lett. 2001, 508, 107–110. [Google Scholar] [CrossRef]
- Kishimoto, Y.; Hiraiwa, M.; O’Brien, J.S. Saposins: Structure, function, distribution, and molecular genetics. J. Lipid Res. 1992, 33, 1255–1267. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.; Henseler, M.; Klein, C.; Suzuki, K.; Harzer, K.; Sandhoff, K. Sphingolipid activator protein D (sap-D) stimulates the lysosomal degradation of ceramide in vivo. Biochem. Biophys. Res. Commun. 1994, 200, 1440–1448. [Google Scholar] [CrossRef] [PubMed]
- Li, S.C.; Kihara, H.; Serizawa, S.; Li, Y.T.; Fluharty, A.L.; Mayes, J.S.; Shapiro, L.J. Activator protein required for the enzymatic hydrolysis of cerebroside sulfate. J. Biol. Chem. 1985, 260, 1867–1871. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.S.; Kishimoto, Y. Saposin proteins: Structure, function, and role in human lysosomal storage disorders. FASEB J. 1991, 5, 301–308. [Google Scholar] [CrossRef]
- Schulze, H.; Kolter, T.; Sandhoff, K. Principles of lysosomal membrane degradation: Cellular topology and biochemistry of lysosomal lipid degradation. Biochim. Biophys. Acta 2009, 1793, 674–683. [Google Scholar] [CrossRef]
- Sun, Y.; Jin, P.; Witte, D.P.; Grabowski, G.A. Isolation and characterization of the human prosaposin promoter. Gene 1998, 218, 37–47. [Google Scholar]
- Sun, Y.; Witte, D.P.; Grabowski, G.A. Developmental and tissue-specific expression of prosaposin mRNA in murine tissues. Am. J. Pathol. 1994, 145, 1390–1398. [Google Scholar]
- Kondoh, K.; Sano, A.; Kakimoto, Y.; Matsuda, S.; Sakanaka, M. Distribution of prosaposin-like immunoreactivity in rat brain. J. Comp. Neurol. 1993, 334, 590–602. [Google Scholar] [CrossRef] [PubMed]
- Hosoda, Y.; Miyawaki, K.; Saito, S.; Chen, J.; Bing, X.; Terashita, T.; Kobayashi, N.; Araki, N.; Shimokawa, T.; Hamada, F.; et al. Distribution of prosaposin in the rat nervous system. Cell Tissue Res. 2007, 330, 197–207. [Google Scholar] [CrossRef]
- Motta, M.; Tatti, M.; Furlan, F.; Celato, A.; Di Fruscio, G.; Polo, G.; Manara, R.; Nigro, V.; Tartaglia, M.; Burlina, A.; et al. Clinical, biochemical and molecular characterization of prosaposin deficiency. Clin. Genet. 2016, 90, 220–229. [Google Scholar] [CrossRef]
- Tatti, M.; Motta, M.; Di Bartolomeo, S.; Scarpa, S.; Cianfanelli, V.; Cecconi, F.; Salvioli, R. Reduced cathepsins B and D cause impaired autophagic degradation that can be almost completely restored by overexpression of these two proteases in Sap C-deficient fibroblasts. Hum. Mol. Genet. 2012, 21, 5159–5173. [Google Scholar] [CrossRef] [PubMed]
- Maiuri, M.C.; Zalckvar, E.; Kimchi, A.; Kroemer, G. Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 2007, 8, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Tsvetkov, A.S.; Finkbeiner, S. Protein turnover and inclusion body formation. Autophagy 2009, 5, 1037–1038. [Google Scholar] [CrossRef] [PubMed]
- Nixon, R.A.; Yang, D.-S.; Lee, J.-H. Neurodegenerative lysosomal disorders: A continuum from development to late age. Autophagy 2008, 4, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Son, J.H.; Shim, J.H.; Kim, K.H.; Ha, J.Y.; Han, J.Y. Neuronal autophagy and neurodegenerative diseases. Exp. Mol. Med. 2012, 44, 89–98. [Google Scholar] [CrossRef]
- He, Y.; Kaya, I.; Shariatgorji, R.; Lundkvist, J.; Wahlberg, L.U.; Nilsson, A.; Mamula, D.; Kehr, J.; Zareba-Paslawska, J.; Biverstål, H.; et al. Prosaposin maintains lipid homeostasis in dopamine neurons and counteracts experimental parkinsonism in rodents. Nat. Commun. 2023, 14, 5804. [Google Scholar] [CrossRef] [PubMed]
- Hineno, T.; Sano, A.; Kondoh, K.; Ueno, S.; Kakimoto, Y.; Yoshida, K. Secretion of sphingolipid hydrolase activator precursor, prosaposin. Biochem. Biophys. Res. Commun. 1991, 176, 668–674. [Google Scholar] [CrossRef]
- Koochekpour, S.; Hu, S.; Vellasco-Gonzalez, C.; Bernardo, R.; Azabdaftari, G.; Zhu, G.; Zhau, H.E.; Chung, L.W.K.; Vessella, R.L. Serum prosaposin levels are increased in patients with advanced prostate cancer. Prostate 2012, 72, 253–269. [Google Scholar] [CrossRef]
- Nabeka, H.; Saito, S.; Li, X.; Shimokawa, T.; Khan, M.S.I.; Yamamiya, K.; Kawabe, S.; Doihara, T.; Hamada, F.; Kobayashi, N.; et al. Interneurons secrete prosaposin, a neurotrophic factor, to attenuate kainic acid-induced neurotoxicity. IBRO Rep. 2017, 3, 17–32. [Google Scholar] [CrossRef]
- Salvioli, R.; Ricci-Vitiani, L.; Tatti, M.; Scarpa, S.; De Maria, R.; Vaccaro, A.M. The secretion and maturation of prosaposin and procathepsin D are blocked in embryonic neural progenitor cells. Biochim. Biophys. Acta 2008, 1783, 1480–1489. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.S.; Carson, G.S.; Seo, H.C.; Hiraiwa, M.; Kishimoto, Y. Identification of prosaposin as a neurotrophic factor. Proc. Natl. Acad. Sci. USA 1994, 91, 9593–9596. [Google Scholar] [CrossRef] [PubMed]
- Campana, W.M.; Hiraiwa, M.; O’Brien, J.S. Prosaptide activates the MAPK pathway by a G-protein-dependent mechanism essential for enhanced sulfatide synthesis by Schwann cells. FASEB J. 1998, 12, 307–314. [Google Scholar] [PubMed]
- Hiraiwa, M.; Campana, W.M.; Martin, B.M.; O’Brien, J.S. Prosaposin receptor: Evidence for a G-protein-associated receptor. Biochem. Biophys. Res. Commun. 1997, 240, 415–418. [Google Scholar] [CrossRef]
- Meyer, R.C.; Giddens, M.M.; Schaefer, S.A.; Hall, R.A. GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin. Proc. Natl. Acad. Sci. USA 2013, 110, 9529–9534. [Google Scholar] [CrossRef]
- Meyer, R.C.; Giddens, M.M.; Coleman, B.M.; Hall, R.A. The protective role of prosaposin and its receptors in the nervous system. Brain Res. 2014, 1585, 1–12. [Google Scholar] [CrossRef]
- Bertmar, G. Evolution of vomeronasal organs in vertebrates. Evolution 1981, 35, 359–366. [Google Scholar] [CrossRef]
- Graziadei, P.P.C. The olfactory mucosa of vertebra. In Handbook of Sensory Physiology; Beidler, M.L., Ed.; Springer: Berlin, Germany, 1971; Volume IV, Chemical Senses 1, Olfaction; pp. 27–58. [Google Scholar]
- Barrios, A.W.; Núñez, G.; Sánchez Quinteiro, P.; Salazar, I. Anatomy, histochemistry, and immunohistochemistry of the olfactory subsystems in mice. Front. Neuroanat. 2014, 8, 63. [Google Scholar] [CrossRef]
- Moulton, D.G.; Beidler, L.M. Structure and function in the peripheral olfactory system. Physiol. Rev. 1967, 47, 1–52. [Google Scholar] [CrossRef]
- Smith, T.D.; Bhatnagar, K.P. Anatomy of the olfactory system. In Handbook of Clinical Neurology; Doty, R.L., Ed.; Elsevier: Amsterdam, The Netherland, 2019; Volume 164, Smell and Taste; pp. 17–28. [Google Scholar]
- Adams, D.R. Fine structure of the vomeronasal and septal olfactory epithelia and of glandular structures. Microsc. Res. Tech. 1992, 23, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Døving, K.B.; Trotier, D. Structure and function of the vomeronasal organ. J. Exp. Biol. 1998, 201, 2913–2925. [Google Scholar] [CrossRef]
- Halpern, M.; Martínez-Marcos, A. Structure and function of the vomeronasal system: An update. Prog. Neurobiol. 2003, 70, 245–318. [Google Scholar] [CrossRef] [PubMed]
- Barber, P.C.; Raisman, G. Cell division in the vomeronasal organ of the adult mouse. Brain Res. 1978, 141, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Giacobini, P.; Benedetto, A.; Tirindelli, R.; Fasolo, A. Proliferation and migration of receptor neurons in the vomeronasal organ of the adult mouse. Brain Res. Dev. Brain Res. 2000, 123, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Katreddi, R.R.; Forni, P.E. Mechanisms underlying pre- and postnatal development of the vomeronasal organ. Cell. Mol. Life Sci. 2021, 78, 5069–5082. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Marcos, A.; Jia, C.; Quan, W.; Halpern, M. Neurogenesis, migration, and apoptosis in the vomeronasal epithelium of adult mice. J. Neurobiol. 2005, 63, 173–187. [Google Scholar] [CrossRef]
- Graziadei, P.P.C.; Monti Graziadei, G.A. Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J. Neurocytol. 1979, 8, 1–18. [Google Scholar] [CrossRef] [PubMed]
- McClintock, T.S.; Khan, N.; Xie, C.; Martens, J.R. Maturation of the olfactory sensory neuron and its cilia. Chem. Senses 2020, 45, 805–822. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, K.; Homma, T.; Sohel, M.S.H.; Fuyuki, A.; Miyawaki, S.; Onouchi, S.; Saito, S. Expression patterns of prosaposin and its receptors, G protein-coupled receptor (GPR) 37 and GPR37L1, in the mouse olfactory organ. Tissue Cell 2023, 82, 102093. [Google Scholar] [CrossRef]
- Fujita, N.; Suzuki, K.; Vanier, M.T.; Popko, B.; Maeda, N.; Klein, A.; Henseler, M.; Sandhoff, K.; Nakayasu, H.; Suzuki, K. Targeted disruption of the mouse sphingolipid activator protein gene: A complex phenotype, including severe leukodystrophy and wide-spread storage of multiple sphingolipids. Hum. Mol. Genet. 1996, 5, 711–725. [Google Scholar] [CrossRef]
- Oya, Y.; Nakayasu, H.; Fujita, N.; Suzuki, K.; Suzuki, K. Pathological study of mice with total deficiency of sphingolipid activator proteins (SAP knockout mice). Acta Neuropathol. 1998, 96, 29–40. [Google Scholar] [CrossRef]
- Saito, S.; Saito, K.; Nabeka, H.; Shimokawa, T.; Kobayashi, N.; Matsuda, S. Differential expression of the alternatively spliced forms of prosaposin mRNAs in rat choroid plexus. Cell Tissue Res. 2014, 356, 231–242. [Google Scholar] [CrossRef]
- Sano, A.; Hineno, T.; Mizuno, T.; Kondoh, K.; Ueno, S.; Kakimoto, Y.; Inui, K. Sphingolipid hydrolase activator proteins and their precursors. Biochem. Biophys. Res. Commun. 1989, 165, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.H.; Gill, S.; Pannell, L.K.; Menco, B.P.; Margolis, J.W.; Margolis, F.L. The interaction of Bex and OMP reveals a dimer of OMP with a short half-life. J. Neurochem. 2004, 90, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Farbman, A.I.; Margolis, F.L. Olfactory marker protein during ontogeny: Immunohistochemical localization. Dev. Biol. 1980, 74, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni-Narla, A.; Getchell, T.V.; Getchell, M.L. Differential expression of manganese and copper-zinc superoxide dismutases in the olfactory and vomeronasal receptor neurons of rats during ontogeny. J. Comp. Neurol. 1997, 381, 31–40. [Google Scholar] [CrossRef]
- Verhaagen, J.; Oestreicher, A.B.; Gispen, W.H.; Margolis, F.L. The expression of the growth associated protein B50/GAP43 in the olfactory system of neonatal and adult rats. J. Neurosci. 1989, 9, 683–691. [Google Scholar] [CrossRef]
- Bannister, L.H.; Dodson, H.C. Endocytic pathways in the olfactory and vomeronasal epithelia of the mouse: Ultrastructure and uptake of tracers. Microsc. Res. Tech. 1992, 23, 128–141. [Google Scholar] [CrossRef]
- Garrosa, M.; Coca, S. Postnatal development of the vomeronasal epithelium in the rat: An ultrastructural study. J. Morph. 1991, 208, 257–269. [Google Scholar] [CrossRef]
- Weiler, E.; McCulloch, M.A.; Farbman, A.I. Proliferation in the vomeronasal organ of the rat during postnatal development. Eur. J. Neurosci. 1999, 11, 700–711. [Google Scholar] [CrossRef]
- Wilson, K.C.; Raisman, G. Age-related changes in the neurosensory epithelium of the mouse vomeronasal organ: Extended period of postnatal growth in size and evidence for rapid cell turnover in the adult. Brain Res. 1980, 185, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Breipohl, W.; Bhatnagar, K.P.; Blank, M.; Mendoza, A.S. Intraepithelial blood vessels in the vomeronasal neuroepithelium of the rat. A light and electron microscopic study. Cell Tissue Res. 1981, 215, 465–473. [Google Scholar] [CrossRef]
- Berghard, A.; Buck, L.B. Sensory transduction in vomeronasal neurons: Evidence for G alpha o, G alpha i2, and adenylyl cyclase II as major components of a pheromone signaling cascade. J. Neurosci. 1996, 16, 909–918. [Google Scholar] [CrossRef]
- Sugai, T.; Miyazawa, T.; Yoshimura, H.; Onoda, N. Developmental changes in oscillatory and slow responses of the rat accessory olfactory bulb. Neuroscience 2005, 134, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Kotani, Y.; Matsuda, S.; Sakanaka, M.; Kondoh, K.; Ueno, S.; Sano, A. Prosaposin facilitates sciatic nerve regeneration in vivo. J. Neurochem. 1996, 66, 2019–2025. [Google Scholar] [CrossRef] [PubMed]
- Kotani, Y.; Matsuda, S.; Wen, T.C.; Sakanaka, M.; Tanaka, J.; Maeda, N.; Kondoh, K.; Ueno, S.; Sano, A. A hydrophilic peptide comprising 18 amino acid residues of the prosaposin sequence has neurotrophic activity in vitro and in vivo. J. Neurochem. 1996, 66, 2197–2200. [Google Scholar] [CrossRef] [PubMed]
- Sano, A.; Matsuda, S.; Wen, T.C.; Kotani, Y.; Kondoh, K.; Ueno, S.; Kakimoto, Y.; Yoshimura, H.; Sakanaka, M. Protection by prosaposin against ischemia-induced learning disability and neuronal loss. Biochem. Biophys. Res. Commun. 1994, 204, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Terashita, T.; Saito, S.; Nabeka, H.; Hato, N.; Wakisaka, H.; Shimokawa, T.; Kobayashi, N.; Gyo, K.; Matsuda, S. Prosaposin-derived peptide alleviates ischaemia-induced hearing loss. Acta Otolaryngol. 2013, 133, 462–468. [Google Scholar] [CrossRef]
- Gao, H.L.; Li, C.; Nabeka, H.; Shimokawa, T.; Saito, S.; Wang, Z.Y.; Cao, Y.M.; Matsuda, S. Attenuation of MPTP/MPP(+) toxicity in vivo and in vitro by an 18-mer peptide derived from prosaposin. Neuroscience 2013, 236, 373–393. [Google Scholar] [CrossRef]
- Gao, H.L.; Li, C.; Nabeka, H.; Shimokawa, T.; Wang, Z.Y.; Cao, Y.M.; Matsuda, S. An 18-mer Peptide Derived from Prosaposin Ameliorates the Effects of Aβ1-42 Neurotoxicity on Hippocampal Neurogenesis and Memory Deficit in Mice. J. Alzheimers Dis. 2016, 53, 1173–1192. [Google Scholar] [CrossRef] [PubMed]
Name | Specificity | Antigen | Manufacturer, ID, Host | Dilution | Reference |
---|---|---|---|---|---|
Anti-saposin C domain antibody | Both prosaposin and saposin C | Saposin C extracted from bovine spleen | Generated by Sano et al. (1989), Rabbit, [54] | 1:250 | Sano et al. (1989) Biochem. Biophys. Res. Commun. 165, 1191–1197. [54] Kondoh et al. (1993) J. Comp. Neurol. 334, 590–602. [18] |
Anti-OMP antibody | Olfactory marker protein (OMP) | Rodent OMP | Fujifilm Wako Pure Chemical Co. (Osaka, Japan), 019-22291, Goat | 1:200 | Koo et al. (2004) J. Neurochem. 90, 102–116. [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitamura, K.; Saito, K.; Homma, T.; Fuyuki, A.; Onouchi, S.; Saito, S. Prosaposin/Saposin Expression in the Developing Rat Olfactory and Vomeronasal Epithelia. J. Dev. Biol. 2024, 12, 29. https://doi.org/10.3390/jdb12040029
Kitamura K, Saito K, Homma T, Fuyuki A, Onouchi S, Saito S. Prosaposin/Saposin Expression in the Developing Rat Olfactory and Vomeronasal Epithelia. Journal of Developmental Biology. 2024; 12(4):29. https://doi.org/10.3390/jdb12040029
Chicago/Turabian StyleKitamura, Kai, Kyoko Saito, Takeshi Homma, Aimi Fuyuki, Sawa Onouchi, and Shouichiro Saito. 2024. "Prosaposin/Saposin Expression in the Developing Rat Olfactory and Vomeronasal Epithelia" Journal of Developmental Biology 12, no. 4: 29. https://doi.org/10.3390/jdb12040029
APA StyleKitamura, K., Saito, K., Homma, T., Fuyuki, A., Onouchi, S., & Saito, S. (2024). Prosaposin/Saposin Expression in the Developing Rat Olfactory and Vomeronasal Epithelia. Journal of Developmental Biology, 12(4), 29. https://doi.org/10.3390/jdb12040029