Alterations in Synthesis and Repair of DNA during the Development of Loach Misgurnus fossilis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generation of Transgenic Loach Larvae Bearing Gene Encoding DNA Polymerase Iota
2.2. Preparation of Cellular Extracts for DNA Polymerase Reaction
2.3. Substrates for DNA Polymerase Reaction
2.4. Radiolabeled Primer Extension Reaction
3. Results and Discussion
3.1. Human Pol ι Overexpression-Induced Alterations in DNA Synthesis in Tissue Extracts of Loach Larvae
3.2. The Role of Pol ι in the Bypassing of T-Stop
3.3. Developmental Changes in Corrective DNA Repair of Substrate Bearing Non-Complementary Nucleotide at the 3’-End
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Friedberg, E.C.; McDaniel, L.D.; Schultz, R.A. The role of endogenous and exogenous DNA damage and mutagenesis. Curr. Opin. Genet. Dev. 2004, 14, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Nouspikel, T. DNA repair in mammalian cells: Nucleotide excision repair: Variations on versatility. Cell. Mol. Life Sci. 2009, 66, 994–1009. [Google Scholar] [CrossRef] [PubMed]
- Lindachl, T.; Barnes, D.E. Repair of endogenious DNA damage. Cold Spring Harbor Symp. Quant. Biol. 2000, 65, 127–133. [Google Scholar] [CrossRef]
- Hoeijmakers, J.H. DNA damage, aging, and cancer. N. Engl. J. Med. 2009, 361, 1475–1485. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Pearlman, A.H.; Hsieh, P. DNA mismatch repair and the DNA damage response. DNA Repair 2015. [Google Scholar] [CrossRef] [PubMed]
- Dijk, M.; Typas, D.; Mullenders, L.; Pines, A. Insight in the multilevel regulation of NER. Exp. Cell. Res. 2014, 329, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Vasquez, K.M. Impact of alternative DNA structures on DNA damage, DNA repair, and genetic instability. DNA Repair 2014, 19, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, S.; Demir, N. DNA repair mechanisms in mammalian germ cells. Histol. Histopathol. 2011, 26, 505–517. [Google Scholar] [PubMed]
- Iyama, T.; Wilson, D.M., III. DNA repair mechanisms in dividing and non-dividing cells. DNA Repair 2013, 12, 620–636. [Google Scholar] [CrossRef] [PubMed]
- Branzei, D.; Foiani, M. Maintaining genome stability at the replication fork. Nat. Rev. Mol. Cell Biol. 2010, 11, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Franchitto, A.; Pichierri, P. Replication fork recovery and regulation of common fragile sites stability. Cell. Mol. Life Sci. 2014, 71, 4507–4517. [Google Scholar] [CrossRef] [PubMed]
- Arana, M.E.; Kunkel, T.A. Mutator phenotypes due to DNA replication infidelity. Semin. Cancer Biol. 2010, 20, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Crespan, E.; Amoroso, A.; Maga, G. DNA polymerases and mutagenesis in human cancers. Subcell. Biochem. 2010, 50, 165–188. [Google Scholar] [PubMed]
- Sirover, M.A.; Loeb, L.A. Metal-induced infidelity during DNA synthesis. Proc. Natl. Acad. Sci. USA 1976, 73, 2331–2335. [Google Scholar] [CrossRef] [PubMed]
- Zakour, R.A.; Kunkel, T.A.; Loeb, L.A. Metal-induced infidelity of DNA synthesis. Environ. Health Perspect. 1981, 40, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Vidal, A.E.; Woodgate, R. Insights into the cellular role of enigmatic DNA polymerase iota. DNA Repair 2009, 8, 420–423. [Google Scholar] [CrossRef] [PubMed]
- Gening, L.V. DNA polymerase ι of mammals as a participant in translesion synthesis of DNA. Biochemistry 2011, 76, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Frank, E.G.; Woodgate, R. Increased catalytic activity and altered fidelity of human DNA polymerase iota in the presence of manganese. J. Biol. Chem. 2007, 282, 24689–24696. [Google Scholar] [CrossRef] [PubMed]
- Lakhin, A.V.; Efremova, A.S.; Makarova, I.V.; Grishina, E.E.; Shram, S.I.; Tarantul, V.Z.; Gening, L.V. Effect of Mn(II) on the error-prone DNA polymerase iota activity in extracts from human normal and tumor cells. Mol. Gen. Mikrobiol. Virusol. 2013, 1, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Makarova, A.V.; Gening, L.V.; Makarova, I.V.; Tarantul, V.Z. Activity of error-prone DNA polymerase iota in different periods of house mouse Mus musculus ontogeny. Ontogenez 2008, 39, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Makarova, I.V.; Kazakov, A.A.; Makarova, A.V.; Khaidarova, N.V.; Kozikova, L.V.; Nenasheva, V.V.; Gening, L.V.; Tarantul, V.Z.; Andreeva, L.E. Transient expression and activity of human DNA polymerase iota in loach embryos. Biotechnol. Lett. 2012, 34, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Gee, J.B., II; Corbett, R.J.; Perlman, J.M.; Laptook, A.R. Hypermagnesemia does not increase brain intracellular magnesium in newborn swine. Pediatr. Neurol. 2001, 25, 304–308. [Google Scholar] [CrossRef]
- Goldschmidt, V.; Didierjean, J.; Ehresmann, B.; Ehresmann, C.; Isel, C.; Marquet, R. Mg2+ dependency of HIV-1 reverse transcription, inhibition by nucleoside analogues and resistance. Nucleic Acids Res. 2006, 34, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Kazakov, A.A.; Grishina, E.E.; Tarantul, V.Z.; Gening, L.V. Effect of human cell malignancy on activity of DNA polymerase iota. Biochemistry 2010, 75, 905–911. [Google Scholar] [PubMed]
- Gening, L.V.; Petrochenkov, A.N.; Reshetnyak, A.B.; Andreeva, L.E.; Tarantul, V.Z. DNA polymerase iota-like activity in crude cell extracts of different mouse organs. Biochemistry 2004, 69, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Gening, L.V.; Makarova, A.V.; Malashenko, A.M.; Tarantul, V.Z. A false note of DNA polymerase iota in the choir of genome caretakers in mammals. Biochemistry 2006, 71, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Lakhin, A.V.; Kazakov, A.A.; Makarova, A.V.; Pavlov, Y.I.; Efremova, A.S.; Shram, S.I.; Tarantul, V.Z.; Gening, L.V. Isolation and characterization of high affinity aptamers against DNA polymerase iota. Nucleic Acid. Ther. 2012, 22, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Makarova, A.V.; Grabow, C.; Gening, L.V.; Tarantul, V.Z.; Tahirov, T.H.; Bessho, T.; Pavlov, Y.I. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota. PLoS ONE 2011, 6, e16612. [Google Scholar] [CrossRef] [PubMed]
- Kazakov, A.; Gening, L.; Institute of Molecular Genetics, Moscow, Russia. Unpublished work. 2009.
- Kannouche, P.; Lehmann, A. Localization of Y-family polymerases and the DNA polymerase switch in mammalian cells. Methods Enzymol. 2006, 408, 407–415. [Google Scholar] [PubMed]
- Sekimoto, T.; Oda, T.; Kurashima, K.; Hanaoka, F.; Yamashita, T. Both high-fidelity replicative and low-fidelity Y-family polymerases are involved in DNA rereplication. Mol. Cell. Biol. 2015, 35, 699–715. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.P.; Frank, E.G.; Plosky, B.S.; Rogozin, I.B.; Masutani, C.; Hanaoka, F.; Woodgate, R.; Gearhart, P.J. 129-derived strains of mice are deficient in DNA polymerase iota and have normal immunoglobulin hypermutation. J. Exp. Med. 2003, 198, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, Z.; Liu, Y.; Hickey, R.J.; Malkas, L.H. Altered DNA polymerase iota expression in breast cancer cells leads to a reduction in DNA replication fidelity and a higher rate of mutagenesis. Cancer Res. 2004, 64, 5597–5607. [Google Scholar] [CrossRef] [PubMed]
- Fortier, S.; Yang, X.; Wang, Y.; Bennett, R.A.; Strauss, P.R. Base excision repair in early zebrafish development: Evidence for DNA polymerase switching and standby AP endonuclease activity. Biochemistry 2009, 48, 5396–5404. [Google Scholar] [CrossRef] [PubMed]
- Kienzler, A.; Bony, S.; Devaux, A. DNA repair activity in fish and interest in ecotoxicology: A review. Aquat. Toxicol. 2013, 134–135, 47–56. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gening, L.V.; Lakhin, A.V.; Makarova, I.V.; Nenasheva, V.V.; Andreeva, L.E.; Tarantul, V.Z. Alterations in Synthesis and Repair of DNA during the Development of Loach Misgurnus fossilis. J. Dev. Biol. 2016, 4, 6. https://doi.org/10.3390/jdb4010006
Gening LV, Lakhin AV, Makarova IV, Nenasheva VV, Andreeva LE, Tarantul VZ. Alterations in Synthesis and Repair of DNA during the Development of Loach Misgurnus fossilis. Journal of Developmental Biology. 2016; 4(1):6. https://doi.org/10.3390/jdb4010006
Chicago/Turabian StyleGening, Leonid V., Andrei V. Lakhin, Irina V. Makarova, Valentina V. Nenasheva, Ludmila E. Andreeva, and Vyacheslav Z. Tarantul. 2016. "Alterations in Synthesis and Repair of DNA during the Development of Loach Misgurnus fossilis" Journal of Developmental Biology 4, no. 1: 6. https://doi.org/10.3390/jdb4010006
APA StyleGening, L. V., Lakhin, A. V., Makarova, I. V., Nenasheva, V. V., Andreeva, L. E., & Tarantul, V. Z. (2016). Alterations in Synthesis and Repair of DNA during the Development of Loach Misgurnus fossilis. Journal of Developmental Biology, 4(1), 6. https://doi.org/10.3390/jdb4010006